首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
自加权分层多阶段抽样设计具有三大特征:一为除第一阶抽样外其余各阶抽样的样本量均为常数,二为样本量按照各层的最终单元数量在各层比例分配,三为前几阶采用抽样而最后一阶采用放回或不放回的简单随机抽样。根据上述三个特征设计了中国人口变动调查的自加权抽样设计。  相似文献   

2.
In statistical practice, systematic sampling (SYS) is used in many modifications due to its simple handling. In addition, SYS may provide efficiency gains if it is well adjusted to the structure of the population under study. However, if SYS is based on an inappropriate picture of the population a high decrease of efficiency, i.e. a high increase in variance may result by changing from simple random sampling to SYS. In the context of two-stage designs SYS so far seems often in use for subsampling within the primary units. As an alternative to this practice, we propose to randomize the order of the primary units, then to select systematically a number of primary units and, thereafter, to draw secondary units by simple random sampling without replacement within the primary units selected. This procedure is more efficient than simple random sampling with replacement from the whole population of all secondary units, i.e. the variance of an adequate estimator for a total is never increased by changing from simple random sampling to randomized SYS whatever be the values associated by a characteristic with the secondary units, while there are values for which the variance decreases for the change mentioned. This result should hold generally, even if our proof, so far, is not complete for general sample sizes.  相似文献   

3.
In this study, an attempt has been made to improve the sampling strategy incorporating spatial dependency at estimation stage considering usual aerial sampling scheme, such as simple random sampling, when the underlying population is finite and spatial in nature. Using the distances between spatial units, an improved method of estimation, viz. spatial estimation procedure, has been proposed for the estimation of finite population mean. Further, rescaled spatial bootstrap (RSB) methods have been proposed for approximately unbiased estimation of variance of the proposed spatial estimator (SE). The properties of the proposed SE and its corresponding RSB methods were studied empirically through simulation.  相似文献   

4.
This paper develops two sampling designs to create artificially stratified samples. These designs use a small set of experimental units to determine their relative ranks without measurement. In each set, the units are ranked by all available observers (rankers), with ties whenever the units cannot be ranked with high confidence. The rankings from all the observers are then combined in a meaningful way to create a single weight measure. This weight measure is used to create judgment strata in both designs. The first design constructs the strata through judgment post‐stratification after the data has been collected. The second design creates the strata before any measurements are made on the experimental units. The paper constructs estimators and confidence intervals, and develops testing procedures for the mean and median of the underlying distribution based on these sampling designs. We show that the proposed sampling designs provide a substantial improvement over their competitor designs in the literature. The Canadian Journal of Statistics 41: 304–324; 2013 © 2013 Statistical Society of Canada  相似文献   

5.
Usual stratified sampling design assume that one is able to draw units directly from given strata. If this is not possible, one can use the following double sampling procedure: First take a large simple random sample out of the whole population and find out, to which stratum each sample unit belongs. Out of these chosen units take a second stratified sample. In this paper unbiased estimators for this procedure in the cases of known (part I) and unknown (part II) stratum weights are proposed for sampling with replacement and sampling without replacement and their variances are evaluated.  相似文献   

6.
7.
The impact of guessing auxiliary population attributes, as opposed to relying on actual values from a prior survey, was quantified for three unequal probability sampling methods of tree stem volume (biomass). Reasonable prior guesses (no-list sampling) yielded, in five populations and 35 combinations of population size and sample size, results at par with sampling with known auxiliary predictors (list sampling). Realized sample sizes were slightly inflated in no-list sampling with probability proportional to predictions ( PPP ). Mean absolute differences from true totals and root mean square errors in no-list-sampling schemes were only slightly above those achieved with list sampling. Stratified sampling generally outperformed PPP and systematic sampling, yet the latter is recommended due to consistency between observed and expected mean square errors and overall robustness against a systematic bias in no-list settings.  相似文献   

8.
M. Ruiz Espejo 《Statistics》2013,47(2):287-291
A new expression of the variance of the units from a stratified finite population wit L strata, is obtained in funcions of the means L–1 strata, and in conseqeuence we obtained formulae which relates the mean of a stratum in a statistical study with the population mean and the ones of the remaining strate. As an application, we obtained a useful checking of the estimation consistency by stratified sampling in any precies survey  相似文献   

9.
A genuine small sample theory for post-stratification is developed in this paper. This includes the definition of a ratio estimator of the population mean ?, the derivation of its bias and its exact variance and a discussion of variance estimation. The estimator has both a within strata component of variance which is comparable with that obtained in proportional allocation stratified sampling and a between strata component of variance which will tend to zero as the overall sample size becomes large. Certain optimality properties of the estimator are obtained. The generalization of post-stratification from the simple random sampling to post-stratification used in conjunction with stratification and multi-stage designs is discussed.  相似文献   

10.
In stratified sampling when strata weights are unknown a double sampling technique may be used to estimate them. A large simple random sample from the unstratified population is drawn and units falling in each stratum are recorded. A stratified random sample is then selected and simple random subsamples are obtained out of the previously selected units of the strata. This procedure is called double sampling for stratification. If the problem of non-response is there, then subsamples are divided into classes of respondents and non-respondents. A second subsample is then obtained out of the non-respondents and an attempt is made to obtain the information by increasing efforts, persuasion and call backs. In this paper, the problem of obtaining a compromise allocation in multivariate stratified random sampling is discussed when strata weights are unknown and non-response is present. The problem turns out to be a multiobjective non-linear integer programming problem. An approximation of the problem to an integer linear programming problem by linearizing the non-linear objective functions at their individual optima is worked out. Chebyshev's goal programming technique is then used to solve the approximated problem. A numerical example is also presented to exhibit the practical application of the developed procedure.  相似文献   

11.
In sample survey, post-stratification is often used when the identification of stratum cannot be achieved in advance of the survey. If the sample size is large, post-stratification is usually as effective as the ordinary stratification with proportional allocation. However, in the case of small samples, no general acceptable theory or technique has been well developed. One of the main difficulties is the possibility of obtaining zero sample sizes in some strata for small samples. In this paper, we overcome this difficulty by employing a sampling scheme referred to as the multiple inverse sampling such that each stratum is ensured to be sampled a specified number of observations. A Monte Carlo simulation is carried out to compare the estimator obtained from the multiple inverse sampling with some other existing estimators. The estimator under multiple inverse sampling is superior in the sense that it is unbiased and its variance does not depend on the values of stratum means in the population.  相似文献   

12.
Ranked set sampling (RSS) is a sampling procedure that can be used to improve the cost efficiency of selecting sample units of an experiment or a study. In this paper, RSS is considered for estimating the location and scale parameters a and b>0, as well as the population mean from the family F((x?a)/b). Modified best linear unbiased estimators (BLUEs) and best linear invariant estimators (BLIEs) are considered. Numerical computations with different location-scale distributions and different sample sizes are conducted to assess the efficiency of the suggested estimators. It is found that the modified BLIEs are uniformly higher than that of BLUEs for all distributions considered in this study. The modified BLUE and BLIE are more efficient when the underlying distribution is symmetric.  相似文献   

13.
In finite population sampling, it has long been known that, for small sample sizes, when sampling from a skewed population, the usual frequentist intervals for the population mean cover the true value less often than their stated frequency of coverage. Recently, a non-informative Bayesian approach to some problems in finite population sampling has been developed, which is based on the 'Polya posterior'. For large sample sizes, these methods often closely mimic standard frequentist methods. In this paper, a modification of the 'Polya posterior', which employs the weighted Polya distribution, is shown to give interval estimators with improved coverage properties for problems with skewed populations and small sample sizes. This approach also yields improved tests for hypotheses about the mean of a skewed distribution.  相似文献   

14.
Spatial robust small area estimation   总被引:1,自引:0,他引:1  
The accuracy of recent applications in small area statistics in many cases highly depends on the assumed properties of the underlying models and the availability of micro information. In finite population sampling, small sample sizes may increase the sensitivity of the modeling with respect to single units. In these cases, area-specific sample sizes tend to be small such that normal assumptions, even of area means, seem to be violated. Hence, applying robust estimation methods is expected to yield more reliable results. In general, two robust small area methods are applied, the robust EBLUP and the M-quantile method. Additionally, the use of adequate auxiliary information may further increase the accuracy of the estimates. In prediction based approaches where information is needed on universe level, in general, only few variables are available which can be used for modeling. In addition to variables from the dataset, in many cases further information may be available, e.g. geographical information which could indicate spatial dependencies between neighboring areas. This spatial information can be included in the modeling using spatially correlated area effects. Within the paper the classical robust EBLUP is extended to cover spatial area effects via a simultaneous autoregressive model. The performance of the different estimators are compared in a model-based simulation study.  相似文献   

15.
Purposive sampling is described as a random selection of sampling units within the segment of the population with the most information on the characteristic of interest. Nonparametric bootstrap is proposed in estimating location parameters and the corresponding variances. An estimate of bias and a measure of variance of the point estimate are computed using the Monte Carlo method. The bootstrap estimator of the population mean is efficient and consistent in the homogeneous, heterogeneous, and two-segment populations simulated. The design-unbiased approximation of the standard error estimate differs substantially from the bootstrap estimate in severely heterogeneous and positively skewed populations.  相似文献   

16.
In this paper, a new sampling method is suggested, namely truncation-based ranked set samples (TBRSS) for estimating the population mean and median. The suggested method is compared with the simple random sampling (SRS), ranked set sampling (RSS), extreme ranked set sampling (ERSS) and median-ranked set sampling (MRSS) methods. It is shown that for estimating the population mean when the underlying distribution is symmetric, TBRSS estimator is unbiased and it is more efficient than the SRS estimator based on the same number of measured units. For asymmetric distributions considered in this study, TBRSS estimator is more efficient than the SRS for all considered distributions except for exponential distribution when the selection coefficient gets large. When compared with ERSS and MRSS methods, TBRSS performs well with respect to ERSS for all considered distributions except for U(0, 1) distribution, while TBRSS efficiency is higher than that of MRSS for U(0, 1) distribution. For estimating the population median, the TBRSS estimators have higher efficiencies when compared with SRS and ERSS. A real data set is used to illustrate the suggested method.  相似文献   

17.
In multi-character surveys, determination of sample sizes for studying various characters poses a difficult problem. In some situations, instead of observing the same units for all the characters it may be desirable to have some units observed for all the characters whereas some extra units for each character are observed separately. Such type of sampling has been defined here as sampling with partial enumeration. In the present investigation the efficiency of sampling with partial enumeration has been examined as compared to the usual two phase sampling for the study of only two characters.  相似文献   

18.
Systematic sampling is the simplest and easiest of the most common sampling methods. However, when the population size N cannot be evenly divided by the sampling size n, systematic sampling cannot be performed. Not only is it difficult to determine the sampling interval k equivalent to the sampling probability of the sampling unit, but also the sample size will be inconstant and the sample mean will be a biased estimator of the population mean. To solve this problem, this paper introduces an improved method for systematic sampling: the remainder Markov systematic sampling method. This new method involves separately finding the first-order and second-order inclusion probabilities. This approach uses the Horvitz-Thompson estimator as an unbiased estimator of the population mean to find the variance of the estimator. This study examines the effectiveness of the proposed method for different super-populations.  相似文献   

19.
In preposterior analysis, Bayesians use an Expected-Net-Gain chart to identify the optimal sample size. This kind of chart, it turns out, is also an excellent educational vehicle for illustrating many of the reasons given for preferring sampling from a population over taking a census, preferring one type of sampling over another (e.g., stratified sampling rather than simple random sampling), or allocating part of a fixed budget to reduce systematic error rather than using it all to reduce sampling errors. The use of such a chart in a basic statistics course is described.  相似文献   

20.
In this article, a robust ranked set sampling (LRSS) scheme for estimating population mean is introduced. The proposed method is a generalization for many types of ranked set sampling that introduced in the literature for estimating the population mean. It is shown that the LRSS method gives unbiased estimator for the population mean with minimum variance providing that the underlying distribution is symmetric. However, for skewed distributions a weighted mean is given, where the optimal weights is computed by using Shannon's entropy. The performance of the population mean estimator is discussed along with its properties. Monte Carlo comparisons for detecting outliers are made with the traditional simple random sample and the ranked set sampling for some distributions. The results indicate that the LRSS estimator is superior alternative to the existing methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号