首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This report summarizes the proceedings of a conference on quantitative methods for assessing the risks of developmental toxicants. The conference was planned by a subcommittee of the National Research Council's Committee on Risk Assessment Methodology 4 in conjunction with staff from several federal agencies, including the U.S. Environmental Protection Agency, U.S. Food and Drug Administration, U.S. Consumer Products Safety Commission, and Health and Welfare Canada. Issues discussed at the workshop included computerized techniques for hazard identification, use of human and animal data for defining risks in a clinical setting, relationships between end points in developmental toxicity testing, reference dose calculations for developmental toxicology, analysis of quantitative dose-response data, mechanisms of developmental toxicity, physiologically based pharmacokinetic models, and structure-activity relationships. Although a formal consensus was not sought, many participants favored the evolution of quantitative techniques for developmental toxicology risk assessment, including the replacement of lowest observed adverse effect levels (LOAELs) and no observed adverse effect levels (NOAELs) with the benchmark dose methodology.  相似文献   

2.
There is currently no well-accepted standard method for evaluation of developmental toxicity data. This paper presents one approach to the evaluation of developmental toxicity data. We initially identify some pertinent factors that influence the interpretation of animal data and summarize the literature pertaining to these factors. Such factors include the quality and quantity of data and the relationship between maternal and developmental toxicity. We proceed with a discussion of quantitative assessment of data and propose schemes for qualitative and quantitative developmental hazard assessments.  相似文献   

3.
We review approaches to dose-response modeling and risk assessment for binary data from developmental toxicity studies. In particular, we focus on jointly modeling fetal death and malformation and use a continuation ratio formulation of the multinomial distribution to provide a model for risk. Generalized estimating equations are used to account for clustering of animals within litters. The fitted model is then used to calculate doses corresponding to a specified level of excess risk. Two methods of arriving at a lower confidence limit or Benchmark dose are illustrated and compared. We also discuss models based on single binary end points and compare our approach to a binary analysis of whether or not the animal was 'affected' (either dead or malformed). The models are illustrated using data from four developmental toxicity studies in EG, DEHP, TGDM, and DYME conducted through the National Toxicology Program.  相似文献   

4.
The benchmark dose (BMD) is an exposure level that would induce a small risk increase (BMR level) above the background. The BMD approach to deriving a reference dose for risk assessment of noncancer effects is advantageous in that the estimate of BMD is not restricted to experimental doses and utilizes most available dose-response information. To quantify statistical uncertainty of a BMD estimate, we often calculate and report its lower confidence limit (i.e., BMDL), and may even consider it as a more conservative alternative to BMD itself. Computation of BMDL may involve normal confidence limits to BMD in conjunction with the delta method. Therefore, factors, such as small sample size and nonlinearity in model parameters, can affect the performance of the delta method BMDL, and alternative methods are useful. In this article, we propose a bootstrap method to estimate BMDL utilizing a scheme that consists of a resampling of residuals after model fitting and a one-step formula for parameter estimation. We illustrate the method with clustered binary data from developmental toxicity experiments. Our analysis shows that with moderately elevated dose-response data, the distribution of BMD estimator tends to be left-skewed and bootstrap BMDL s are smaller than the delta method BMDL s on average, hence quantifying risk more conservatively. Statistically, the bootstrap BMDL quantifies the uncertainty of the true BMD more honestly than the delta method BMDL as its coverage probability is closer to the nominal level than that of delta method BMDL. We find that BMD and BMDL estimates are generally insensitive to model choices provided that the models fit the data comparably well near the region of BMD. Our analysis also suggests that, in the presence of a significant and moderately strong dose-response relationship, the developmental toxicity experiments under the standard protocol support dose-response assessment at 5% BMR for BMD and 95% confidence level for BMDL.  相似文献   

5.
Recent advances in risk assessment have led to the development of joint dose-response models to describe prenatal death and fetal malformation rates in developmental toxicity experiments. These models can be used to estimate the effective dose corresponding to a 5% excess risk for both these toxicological endpoints, as well as for overall toxicity. In this article, we develop optimal experimental designs for the estimation of the effective dose for developmental toxicity using joint Weibull dose-response models for prenatal death and fetal malformation. Based on an extended series of developmental studies, near-optimal designs for prenatal death, malformation, and overall toxicity were found to involve three dose groups: an unexposed control group, a high dose equal to the maximum tolerated dose, and a low dose above or comparable to the effective dose. The effect on the optimal designs of changing the number of implants and the degree of intra-litter correlation is also investigated. Although the optimal design has only three dose groups in most cases, practical considerations involving model lack of fit and estimation of the shape of the dose-response curve suggest that, in practice, suboptimal designs with more than three doses will often be preferred.  相似文献   

6.
Standard experimental designs for conducting developmental toxicity studies typically include three- or four-dose levels in addition to a control group. Some researchers have suggested that designs with more exposure groups would improve dose-response characterization and risk estimation. Such proposals have not, however, been supported by the results of simulation studies, which instead back the use of fewer dose levels. This discrepancy is partly due to using a known dose–response pattern to generate data, making model choice obvious. While the carcinogenicity literature has explored implications of different study designs, little attention has been given to the role of design in developmental toxicity risk assessment (or noncancer toxicology in general). In this research, we explore the implications of various experimental designs for developmental toxicity by resampling data from a large study of 2,4,5-trichlorophenoxyacetic acid in mice. We compare the properties of benchmark dose (BMD) estimation for different design strategies by randomly selecting animals within particular dose groups from the entire 2,4,5-T database of over 77,000 birth outcomes to create smaller "pseudo-studies" that are representative of standard bioassay sample sizes. Our results show that experimental designs which include more dose levels have advantages in terms of risk characterization and estimation.  相似文献   

7.
Hormetic effects have been observed at low exposure levels based on the dose-response pattern of data from developmental toxicity studies. This indicates that there might actually be a reduced risk of exhibiting toxic effects at low exposure levels. Hormesis implies the existence of a threshold dose level and there are dose-response models that include parameters that account for the threshold. We propose a function that introduces a parameter to account for hormesis. This function is a subset of the set of all functions that could represent a hormetic dose-response relationship at low exposure levels to toxic agents. We characterize the overall dose-response relationship with a piecewise function that consists of a hormetic u-shape curve at low dose levels and a logistic curve at high dose levels. We apply our model to a data set from an experiment conducted at the National Toxicology Program (NTP). We also use the beta-binomial distribution to model the litter response data. It can be seen by observing the structure of these data that current experimental designs for developmental studies employ a limited number of dose groups. These designs may not be satisfactory when the goal is to illustrate the existence of hormesis. In particular, increasing the number of low-level doses improves the power for detecting hormetic effects. Therefore, we also provide the results of simulations that were done to characterize the power of current designs in detecting hormesis and to demonstrate how this power can be improved upon by altering these designs with the addition of only a few low exposure levels.  相似文献   

8.
D. Krewski  Y. Zhu 《Risk analysis》1994,14(4):613-627
Reproductive and developmental anomalies induced by toxic chemicals may be identified using laboratory experiments with small mammalian species such as rats, mice, and rabbits. In this paper, dose-response models for correlated multinomial data arising in studies of developmental toxicity are discussed. These models provide a joint characterization of dose-response relationships for both embryolethality and teratogenicity. Generalized estimating equations are used for model fitting, incorporating overdispersion relative to the multinomial variation due to correlation among littermates. The fitted dose-response models are used to estimate benchmark doses in a series of experiments conducted by the U.S. National Toxicology Program. Joint analysis of prenatal death and fetal malformation using an extended Dirichlet-trinomial covariance function to characterize overdispersion appears to have statistical and computational advantages over separate analysis of these two end points. Benchmark doses based on overall toxicity are below the minimum of those for prenatal death and fetal malformation and may, thus, be preferred for risk assessment purposes.  相似文献   

9.
Many chemicals interfere with the natural reproductive processes in mammals. The chemicals may prevent the fertilization of an egg or keep a zygote from implanting in the uterine wall. For this reason, toxicology studies with pre-implantation exposure often exhibit a dose-related trend in the number of observed implantations per litter. Standard methods for analyzing developmental toxicology studies are conditioned on the number of implantations in the litter and therefore cannot estimate this effect of the chemical on the reproductive process. This article presents a joint modeling approach to estimating risk in toxicology studies with pre-implantation exposure. In the joint modeling approach, both the number of implanted fetuses and the outcome of each implanted fetus is modeled. Using this approach we show how to estimate the overall risk of a chemical that incorporates the risk of lost implantation due to pre-implantation exposure. Our approach has several distinct advantages over previous methods: (1) it is based on fitting a model for the observed data and, therefore, diagnostics of model fit and selection apply; (2) all assumptions are explicitly stated; and (3) it can be fit using standard software packages We illustrate our approach by analyzing a dominant lethal assay data set (Luning et al., 1966, Mutation Research, 3, 444-451) and compare ourresults with those of Rai and Van Ryzin (1985, Biometrics, 41,1-9) and Dunson (1998, Biometrics, 54, 558-569). In a simulation study, our approach has smaller bias and variance than the multiple imputation procedure of Dunson.  相似文献   

10.
Multivariate dose-response models have recently been proposed for developmental toxicity data to simultaneously model malformation incidence (a binary outcome), and reductions in fetal weight (a continuous outcome). In this and other applications, the binary outcome often represents a dichotomization of another outcome or a composite of outcomes, which facilitates analysis. For example, in Segment II developmental toxicology studies, multiple malformation types (i.e., external, visceral, skeletal) are evaluated on each fetus; malformation status may also be ordinally measured (e.g., normal, signs of variation, full malformation). A model is proposed is for fetal weight and multiple malformation variables measured on an ordinal scale, where the correlations between the outcomes and between the offspring within a litter are taken into account. Fully specifying the joint distribution of outcomes within a litter is avoided by specifying only the distribution of the multivariate outcome for each fetus and using generalized estimating equation methodology to account for correlations due to litter clustering. The correlations between the outcomes are required to characterize joint risk to the fetus, and are therefore a focus of inference. Dose-response models and their application to quantitative risk assessment are illustrated using data from a recent developmental toxicology experiment of ethylene oxide in mice.  相似文献   

11.
The benchmark dose (BMD)4 approach is emerging as replacement to determination of the No Observed Adverse Effect Level (NOAEL) in noncancer risk assessment. This possibility raises the issue as to whether current study designs for endpoints such as developmental toxicity, optimized for detecting pair wise comparisons, could be improved for the purpose of calculating BMDs. In this paper, we examine various aspects of study design (number of dose groups, dose spacing, dose placement, and sample size per dose group) on BMDs for two endpoints of developmental toxicity (the incidence of abnormalities and of reduced fetal weight). Design performance was judged by the mean-squared error (reflective of the variance and bias) of the maximum likelihood estimate (MLE) from the log-logistic model of the 5% added risk level (the likely target risk for a benchmark calculation), as well as by the length of its 95% confidence interval (the lower value of which is the BMD). We found that of the designs evaluated, the best results were obtained when two dose levels had response rates above the background level, one of which was near the ED05, were present. This situation is more likely to occur with more, rather than fewer dose levels per experiment. In this instance, there was virtually no advantage in increasing the sample size from 10 to 20 litters per dose group. If neither of the two dose groups with response rates above the background level was near the ED05, satisfactory results were also obtained, but the BMDs tended to be more conservative (i.e., lower). If only one dose level with a response rate above the background level was present, and it was near the ED05, reasonable results for the MLE and BMD were obtained, but here we observed benefits of larger dose group sizes. The poorest results were obtained when only a single group with an elevated response rate was present, and the response rate was much greater than the ED05. The results indicate that while the benchmark dose approach is readily applicable to the standard study designs and generally observed dose-responses in developmental assays, some minor design modifications would increase the accuracy and precision of the BMD.  相似文献   

12.
Quantitative risk assessment often begins with an estimate of the exposure or dose associated with a particular risk level from which exposure levels posing low risk to populations can be extrapolated. For continuous exposures, this value, the benchmark dose, is often defined by a specified increase (or decrease) from the median or mean response at no exposure. This method of calculating the benchmark dose does not take into account the response distribution and, consequently, cannot be interpreted based upon probability statements of the target population. We investigate quantile regression as an alternative to the use of the median or mean regression. By defining the dose–response quantile relationship and an impairment threshold, we specify a benchmark dose as the dose associated with a specified probability that the population will have a response equal to or more extreme than the specified impairment threshold. In addition, in an effort to minimize model uncertainty, we use Bayesian monotonic semiparametric regression to define the exposure–response quantile relationship, which gives the model flexibility to estimate the quantal dose–response function. We describe this methodology and apply it to both epidemiology and toxicology data.  相似文献   

13.
Various methods exist to calculate confidence intervals for the benchmark dose in risk analysis. This study compares the performance of three such methods in fitting nonlinear dose-response models: the delta method, the likelihood-ratio method, and the bootstrap method. A data set from a developmental toxicity test with continuous, ordinal, and quantal dose-response data is used for the comparison of these methods. Nonlinear dose-response models, with various shapes, were fitted to these data. The results indicate that a few thousand runs are generally needed to get stable confidence limits when using the bootstrap method. Further, the bootstrap and the likelihood-ratio method were found to give fairly similar results. The delta method, however, resulted in some cases in different (usually narrower) intervals, and appears unreliable for nonlinear dose-response models. Since the bootstrap method is more time consuming than the likelihood-ratio method, the latter is more attractive for routine dose-response analysis. In the context of a probabilistic risk assessment the bootstrap method has the advantage that it directly links to Monte Carlo analysis.  相似文献   

14.
项目风险分析与管理   总被引:3,自引:0,他引:3  
本文在分析比较传统风险分析方法的基础上,提出了一个更为有效的风险分析方法,即“交叉分析-蒙特卡罗模拟”综合模型。并利用此模型对H集团的某技改投资项目进行了案例分析。在此基础上,提出了建立项目风险防范预警系统的风险管理模式。  相似文献   

15.
Quantitative risk assessment involves the determination of a safe level of exposure. Recent techniques use the estimated dose-response curve to estimate such a safe dose level. Although such methods have attractive features, a low-dose extrapolation is highly dependent on the model choice. Fractional polynomials, basically being a set of (generalized) linear models, are a nice extension of classical polynomials, providing the necessary flexibility to estimate the dose-response curve. Typically, one selects the best-fitting model in this set of polynomials and proceeds as if no model selection were carried out. We show that model averaging using a set of fractional polynomials reduces bias and has better precision in estimating a safe level of exposure (say, the benchmark dose), as compared to an estimator from the selected best model. To estimate a lower limit of this benchmark dose, an approximation of the variance of the model-averaged estimator, as proposed by Burnham and Anderson, can be used. However, this is a conservative method, often resulting in unrealistically low safe doses. Therefore, a bootstrap-based method to more accurately estimate the variance of the model averaged parameter is proposed.  相似文献   

16.
Izadi H  Grundy JE  Bose R 《Risk analysis》2012,32(5):830-835
Repeated-dose studies received by the New Substances Assessment and Control Bureau (NSACB) of Health Canada are used to provide hazard information toward risk calculation. These studies provide a point of departure (POD), traditionally the NOAEL or LOAEL, which is used to extrapolate the quantity of substance above which adverse effects can be expected in humans. This project explored the use of benchmark dose (BMD) modeling as an alternative to this approach for studies with few dose groups. Continuous data from oral repeated-dose studies for chemicals previously assessed by NSACB were reanalyzed using U.S. EPA benchmark dose software (BMDS) to determine the BMD and BMD 95% lower confidence limit (BMDL(05) ) for each endpoint critical to NOAEL or LOAEL determination for each chemical. Endpoint-specific benchmark dose-response levels , indicative of adversity, were consistently applied. An overall BMD and BMDL(05) were calculated for each chemical using the geometric mean. The POD obtained from benchmark analysis was then compared with the traditional toxicity thresholds originally used for risk assessment. The BMD and BMDL(05) generally were higher than the NOAEL, but lower than the LOAEL. BMDL(05) was generally constant at 57% of the BMD. Benchmark provided a clear advantage in health risk assessment when a LOAEL was the only POD identified, or when dose groups were widely distributed. Although the benchmark method cannot always be applied, in the selected studies with few dose groups it provided a more accurate estimate of the real no-adverse-effect level of a substance.  相似文献   

17.
Current methods for cancer risk assessment result in single values, without any quantitative information on the uncertainties in these values. Therefore, single risk values could easily be overinterpreted. In this study, we discuss a full probabilistic cancer risk assessment approach in which all the generally recognized uncertainties in both exposure and hazard assessment are quantitatively characterized and probabilistically evaluated, resulting in a confidence interval for the final risk estimate. The methodology is applied to three example chemicals (aflatoxin, N‐nitrosodimethylamine, and methyleugenol). These examples illustrate that the uncertainty in a cancer risk estimate may be huge, making single value estimates of cancer risk meaningless. Further, a risk based on linear extrapolation tends to be lower than the upper 95% confidence limit of a probabilistic risk estimate, and in that sense it is not conservative. Our conceptual analysis showed that there are two possible basic approaches for cancer risk assessment, depending on the interpretation of the dose‐incidence data measured in animals. However, it remains unclear which of the two interpretations is the more adequate one, adding an additional uncertainty to the already huge confidence intervals for cancer risk estimates.  相似文献   

18.
Ethylene oxide (EO) has been identified as a carcinogen in laboratory animals. Although the precise mechanism of action is not known, tumors in animals exposed to EO are presumed to result from its genotoxicity. The overall weight of evidence for carcinogenicity from a large body of epidemiological data in the published literature remains limited. There is some evidence for an association between EO exposure and lympho/hematopoietic cancer mortality. Of these cancers, the evidence provided by two large cohorts with the longest follow-up is most consistent for leukemia. Together with what is known about human leukemia and EO at the molecular level, there is a body of evidence that supports a plausible mode of action for EO as a potential leukemogen. Based on a consideration of the mode of action, the events leading from EO exposure to the development of leukemia (and therefore risk) are expected to be proportional to the square of the dose. In support of this hypothesis, a quadratic dose-response model provided the best overall fit to the epidemiology data in the range of observation. Cancer dose-response assessments based on human and animal data are presented using three different assumptions for extrapolating to low doses: (1) risk is linearly proportionate to dose; (2) there is no appreciable risk at low doses (margin-of-exposure or reference dose approach); and (3) risk below the point of departure continues to be proportionate to the square of the dose. The weight of evidence for EO supports the use of a nonlinear assessment. Therefore, exposures to concentrations below 37 microg/m3 are not likely to pose an appreciable risk of leukemia in human populations. However, if quantitative estimates of risk at low doses are desired and the mode of action for EO is considered, these risks are best quantified using the quadratic estimates of cancer potency, which are approximately 3.2- to 32-fold lower, using alternative points of departure, than the linear estimates of cancer potency for EO. An approach is described for linking the selection of an appropriate point of departure to the confidence in the proposed mode of action. Despite high confidence in the proposed mode of action, a small linear component for the dose-response relationship at low concentrations cannot be ruled out conclusively. Accordingly, a unit risk value of 4.5 x 10(-8) (microg/m3)(-1) was derived for EO, with a range of unit risk values of 1.4 x 10(-8) to 1.4 x 10(-7) (microg/m3)(-1) reflecting the uncertainty associated with a theoretical linear term at low concentrations.  相似文献   

19.
Formaldehyde induced squamous-cell carcinomas in the nasal passages of F344 rats in two inhalation bioassays at exposure levels of 6 ppm and above. Increases in rates of cell proliferation were measured by T. M. Monticello and colleagues at exposure levels of 0.7 ppm and above in the same tissues from which tumors arose. A risk assessment for formaldehyde was conducted at the CIIT Centers for Health Research, in collaboration with investigators from Toxicological Excellence in Risk Assessment (TERA) and the U.S. Environmental Protection Agency (U.S. EPA) in 1999. Two methods for dose-response assessment were used: a full biologically based modeling approach and a statistically oriented analysis by benchmark dose (BMD) method. This article presents the later approach, the purpose of which is to combine BMD and pharmacokinetic modeling to estimate human cancer risks from formaldehyde exposure. BMD analysis was used to identify points of departure (exposure levels) for low-dose extrapolation in rats for both tumor and the cell proliferation endpoints. The benchmark concentrations for induced cell proliferation were lower than for tumors. These concentrations were extrapolated to humans using two mechanistic models. One model used computational fluid dynamics (CFD) alone to determine rates of delivery of inhaled formaldehyde to the nasal lining. The second model combined the CFD method with a pharmacokinetic model to predict tissue dose with formaldehyde-induced DNA-protein cross-links (DPX) as a dose metric. Both extrapolation methods gave similar results, and the predicted cancer risk in humans at low exposure levels was found to be similar to that from a risk assessment conducted by the U.S. EPA in 1991. Use of the mechanistically based extrapolation models lends greater certainty to these risk estimates than previous approaches and also identifies the uncertainty in the measured dose-response relationship for cell proliferation at low exposure levels, the dose-response relationship for DPX in monkeys, and the choice between linear and nonlinear methods of extrapolation as key remaining sources of uncertainty.  相似文献   

20.
There are often several data sets that may be used in developing a quantitative risk estimate for a carcinogen. These estimates are usually based, however, on the dose-response data for tumor incidences from a single sex/strain/species of animal. When appropriate, the use of more data should result in a higher level of confidence in the risk estimate. The decision to use more than one data set (e.g., representing different animal sexes, strains, species, or tumor sites) can be made following biological and statistical analyses of the compatibility of these data sets. Biological analysis involves consideration of factors such as the relevance of the animal models, study design and execution, dose selection and route of administration, the mechanism of action of the agent, its pharmacokinetics, any species- and/or sex-specific effects, and tumor site specificity. If the biological analysis does not prohibit combining data sets, statistical compatibility of the data sets is then investigated. A generalized likelihood ratio test is proposed for determining the compatibility of different data sets with respect to a common dose-response model, such as the linearized multistage model. The biological and statistical factors influencing the decision to combine data sets are described, followed by a case study of bromodichloromethane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号