首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, a semiparametric approach is proposed for the regression analysis of panel count data. Panel count data commonly arise in clinical trials and demographical studies where the response variable is the number of multiple recurrences of the event of interest and observation times are not fixed, varying from subject to subject. It is assumed that two processes exist in this data: the first is for a recurrent event and the second is for observation time. Many studies have been done to estimate mean function and regression parameters under the independency between recurrent event process and observation time process. In this article, the same statistical inference is studied, but the situation where these two processes may be related is also considered. The mixed Poisson process is applied for the recurrent event processes, and a frailty intensity function for the observation time is also used, respectively. Simulation studies are conducted to study the performance of the suggested methods. The bladder tumor data are applied to compare previous studie' results.  相似文献   

2.
This article discusses regression analysis of multivariate panel count data in which the observation process may contain relevant information about or be related to the underlying recurrent event processes of interest. Such data occur if a recurrent event study involves several related types of recurrent events and the observation scheme or process may be subject-specific. For the problem, a class of semiparametric transformation models is presented, which provides a great flexibility for modelling the effects of covariates on the recurrent event processes. For estimation of regression parameters, an estimating equation-based inference procedure is developed and the asymptotic properties of the resulting estimates are established. Also the proposed approach is evaluated by simulation studies and applied to the data arising from a skin cancer chemoprevention trial.  相似文献   

3.
In survival and reliability studies, panel count data arise when we investigate a recurrent event process and each study subject is observed only at discrete time points. If recurrent events of several types are possible, we obtain panel count data with competing risks. Such data arise frequently from transversal studies on recurrent events in demography, epidemiology and reliability experiments where the individuals cannot be observed continuously. In the present paper, we propose an isotonic regression estimator for the cause specific mean function of the underlying recurrent event process of a competing risks panel count data. Further, a nonparametric test is proposed to compare the cause specific mean functions of the panel count competing risks data. Asymptotic properties of the proposed estimator and test statistic are studied. A simulation study is conducted to assess the finite sample behaviour of the proposed estimator and test statistic. Finally, the procedures developed are applied to a real data arising from skin cancer chemo prevention trial.  相似文献   

4.
Panel count data occur in many fields and a number of approaches have been developed. However, most of these approaches are for situations where there is no terminal event and the observation process is independent of the underlying recurrent event process unconditionally or conditional on the covariates. In this paper, we discuss a more general situation where the observation process is informative and there exists a terminal event which precludes further occurrence of the recurrent events of interest. For the analysis, a semiparametric transformation model is presented for the mean function of the underlying recurrent event process among survivors. To estimate the regression parameters, an estimating equation approach is proposed in which an inverse survival probability weighting technique is used. The asymptotic distribution of the proposed estimates is provided. Simulation studies are conducted and suggest that the proposed approach works well for practical situations. An illustrative example is provided. The Canadian Journal of Statistics 41: 174–191; 2013 © 2012 Statistical Society of Canada  相似文献   

5.
Summary.  Recurrent events models have had considerable attention recently. The majority of approaches show the consistency of parameter estimates under the assumption that censoring is independent of the recurrent events process of interest conditional on the covariates that are included in the model. We provide an overview of available recurrent events analysis methods and present an inverse probability of censoring weighted estimator for the regression parameters in the Andersen–Gill model that is commonly used for recurrent event analysis. This estimator remains consistent under informative censoring if the censoring mechanism is estimated consistently, and it generally improves on the naïve estimator for the Andersen–Gill model in the case of independent censoring. We illustrate the bias of ad hoc estimators in the presence of informative censoring with a simulation study and provide a data analysis of recurrent lung exacerbations in cystic fibrosis patients when some patients are lost to follow-up.  相似文献   

6.
Panel count data often occur in a long-term study where the primary end point is the time to a specific event and each subject may experience multiple recurrences of this event. Furthermore, suppose that it is not feasible to keep subjects under observation continuously and the numbers of recurrences for each subject are only recorded at several distinct time points over the study period. Moreover, the set of observation times may vary from subject to subject. In this paper, regression methods, which are derived under simple semiparametric models, are proposed for the analysis of such longitudinal count data. Especially, we consider the situation when both observation and censoring times may depend on covariates. The new procedures are illustrated with data from a well-known cancer study.  相似文献   

7.
Recurrent events are commonly encountered in the natural sciences, engineering, and medicine. The theory of renewal and regenerative processes provides an elegant mathematical foundation for idealized recurrent event processes. In real-world applications, however, the contexts tend to be complicated by a variety of practical intricacies, including observation schemes with different phase and data structures. This paper formulates a recurrent event process as a succession of independent and identically distributed first hitting times for a Wiener sample path as it passes through successive equally-spaced levels. We develop exact mathematical results for statistical inferences based on several observation schemes that include observation initiated at a renewal point, observation of a stationary process over a finite window, and other variants. We also consider inferences drawn from different data structures, including gap times between renewal points (or fragments thereof) and counts of renewal events occurring within an observation window. We explore the precision of estimates using simulated scenarios and develop empirical regression functions for planning the sample size of a recurrent event study. We demonstrate our results using data from a clinical trial for chronic obstructive pulmonary disease in which the recurrent events are successive exacerbations of the condition. The case study demonstrates how covariates can be incorporated into the analysis using threshold regression.  相似文献   

8.
Abstract.  Variable selection is an important issue in all regression analyses, and in this paper we discuss this in the context of regression analysis of panel count data. Panel count data often occur in long-term studies that concern occurrence rate of a recurrent event, and their analysis has recently attracted a great deal of attention. However, there does not seem to exist any established approach for variable selection with respect to panel count data. For the problem, we adopt the idea behind the non-concave penalized likelihood approach and develop a non-concave penalized estimating function approach. The proposed methodology selects variables and estimates regression coefficients simultaneously, and an algorithm is presented for this process. We show that the proposed procedure performs as well as the oracle procedure in that it yields the estimates as if the correct submodel were known. Simulation studies are conducted for assessing the performance of the proposed approach and suggest that it works well for practical situations. An illustrative example from a cancer study is provided.  相似文献   

9.
In this article, we extend the joint frailty models proposed by Zhao and Tong (2011 Zhao , X. , Tong , X. ( 2011 ). Semiparametric regression analysis of panel count data with informative observation times . Comput. Statist. Data. Anal. 55 : 291300 .[Crossref], [Web of Science ®] [Google Scholar]) to panel count data with the time-dependent covariates and informative observation and censoring times. A novel estimating equation approach that does not depend on the distribution of frailty variables and the link function is proposed for estimation of parameters, and the asymptotic properties of the proposed estimators are established. Simulation studies demonstrate that the proposed inference procedure performs well. The analysis of a bladder tumor data is presented to illustrate the method.  相似文献   

10.
Variable selection is an important issue in all regression analysis and in this paper, we discuss this in the context of regression analysis of recurrent event data. Recurrent event data often occur in long-term studies in which individuals may experience the events of interest more than once and their analysis has recently attracted a great deal of attention (Andersen et al., Statistical models based on counting processes, 1993; Cook and Lawless, Biometrics 52:1311–1323, 1996, The analysis of recurrent event data, 2007; Cook et al., Biometrics 52:557–571, 1996; Lawless and Nadeau, Technometrics 37:158-168, 1995; Lin et al., J R Stat Soc B 69:711–730, 2000). However, it seems that there are no established approaches to the variable selection with respect to recurrent event data. For the problem, we adopt the idea behind the nonconcave penalized likelihood approach proposed in Fan and Li (J Am Stat Assoc 96:1348–1360, 2001) and develop a nonconcave penalized estimating function approach. The proposed approach selects variables and estimates regression coefficients simultaneously and an algorithm is presented for this process. We show that the proposed approach performs as well as the oracle procedure in that it yields the estimates as if the correct submodel was known. Simulation studies are conducted for assessing the performance of the proposed approach and suggest that it works well for practical situations. The proposed methodology is illustrated by using the data from a chronic granulomatous disease study.  相似文献   

11.
This paper proposes an estimation procedure for a class of semi-varying coefficient regression models when the covariates of the linear part are subject to measurement errors. Initial estimates for the regression and varying coefficients are first constructed by the profile least-squares procedure without input from heteroscedasticity, a bias-corrected kernel estimate for the variance function then is proposed, which in turn is used to define re-weighted bias-corrected estimates of the regression and varying coefficients. Large sample properties of the proposed estimates are thoroughly investigated. The finite-sample performance of the proposed estimates is assessed by an extensive simulation study and an application to the Boston housing data set. The simulation results show that the re-weighted bias-corrected estimates outperform the initial estimates and the naive estimates.  相似文献   

12.
In dental implant research studies, events such as implant complications including pain or infection may be observed recurrently before failure events, i.e. the death of implants. It is natural to assume that recurrent events and failure events are correlated to each other, since they happen on the same implant (subject) and complication times have strong effects on the implant survival time. On the other hand, each patient may have more than one implant. Therefore these recurrent events or failure events are clustered since implant complication times or failure times within the same patient (cluster) are likely to be correlated. The overall implant survival times and recurrent complication times are both interesting to us. In this paper, a joint modelling approach is proposed for modelling complication events and dental implant survival times simultaneously. The proposed method uses a frailty process to model the correlation within cluster and the correlation within subjects. We use Bayesian methods to obtain estimates of the parameters. Performance of the joint models are shown via simulation studies and data analysis.  相似文献   

13.
Non ignorable missing data is a common problem in longitudinal studies. Latent class models are attractive for simplifying the modeling of missing data when the data are subject to either a monotone or intermittent missing data pattern. In our study, we propose a new two-latent-class model for categorical data with informative dropouts, dividing the observed data into two latent classes; one class in which the outcomes are deterministic and a second one in which the outcomes can be modeled using logistic regression. In the model, the latent classes connect the longitudinal responses and the missingness process under the assumption of conditional independence. Parameters are estimated by the method of maximum likelihood estimation based on the above assumptions and the tetrachoric correlation between responses within the same subject. We compare the proposed method with the shared parameter model and the weighted GEE model using the areas under the ROC curves in the simulations and the application to the smoking cessation data set. The simulation results indicate that the proposed two-latent-class model performs well under different missing procedures. The application results show that our proposed method is better than the shared parameter model and the weighted GEE model.  相似文献   

14.
Multivariate event time data are common in medical studies and have received much attention recently. In such data, each study subject may potentially experience several types of events or recurrences of the same type of event, or event times may be clustered. Marginal distributions are specified for the multivariate event times in multiple events and clustered events data, and for the gap times in recurrent events data, using the semiparametric linear transformation models while leaving the dependence structures for related events unspecified. We propose several estimating equations for simultaneous estimation of the regression parameters and the transformation function. It is shown that the resulting regression estimators are asymptotically normal, with variance–covariance matrix that has a closed form and can be consistently estimated by the usual plug-in method. Simulation studies show that the proposed approach is appropriate for practical use. An application to the well-known bladder cancer tumor recurrences data is also given to illustrate the methodology.  相似文献   

15.
In longitudinal studies, an individual may potentially undergo a series of repeated recurrence events. The gap times, which are referred to as the times between successive recurrent events, are typically the outcome variables of interest. Various regression models have been developed in order to evaluate covariate effects on gap times based on recurrence event data. The proportional hazards model, additive hazards model, and the accelerated failure time model are all notable examples. Quantile regression is a useful alternative to the aforementioned models for survival analysis since it can provide great flexibility to assess covariate effects on the entire distribution of the gap time. In order to analyze recurrence gap time data, we must overcome the problem of the last gap time subjected to induced dependent censoring, when numbers of recurrent events exceed one time. In this paper, we adopt the Buckley–James-type estimation method in order to construct a weighted estimation equation for regression coefficients under the quantile model, and develop an iterative procedure to obtain the estimates. We use extensive simulation studies to evaluate the finite-sample performance of the proposed estimator. Finally, analysis of bladder cancer data is presented as an illustration of our proposed methodology.  相似文献   

16.
Recurrent events are frequently encountered in biomedical studies. Evaluating the covariates effects on the marginal recurrent event rate is of practical interest. There are mainly two types of rate models for the recurrent event data: the multiplicative rates model and the additive rates model. We consider a more flexible additive–multiplicative rates model for analysis of recurrent event data, wherein some covariate effects are additive while others are multiplicative. We formulate estimating equations for estimating the regression parameters. The estimators for these regression parameters are shown to be consistent and asymptotically normally distributed under appropriate regularity conditions. Moreover, the estimator of the baseline mean function is proposed and its large sample properties are investigated. We also conduct simulation studies to evaluate the finite sample behavior of the proposed estimators. A medical study of patients with cystic fibrosis suffered from recurrent pulmonary exacerbations is provided for illustration of the proposed method.  相似文献   

17.
A common problem for longitudinal data analyses is that subjects follow-up is irregular, often related to the past outcome or other factors associated with the outcome measure that are not included in the regression model. Analyses unadjusted for outcome-dependent follow-up yield biased estimates. We propose a longitudinal data analysis that can provide consistent estimates in regression models that are subject to outcome-dependent follow-up. We focus on semiparametric marginal log-link regression with arbitrary unspecified baseline function. Based on estimating equations, the proposed class of estimators are root n consistent and asymptotically normal. We present simulation studies that assess the performance of the estimators under finite samples. We illustrate our approach using data from a health services research study.  相似文献   

18.
During their follow-up, patients with cancer can experience several types of recurrent events and can also die. Over the last decades, several joint models have been proposed to deal with recurrent events with dependent terminal event. Most of them require the proportional hazard assumption. In the case of long follow-up, this assumption could be violated. We propose a joint frailty model for two types of recurrent events and a dependent terminal event to account for potential dependencies between events with potentially time-varying coefficients. For that, regression splines are used to model the time-varying coefficients. Baseline hazard functions (BHF) are estimated with piecewise constant functions or with cubic M-Splines functions. The maximum likelihood estimation method provides parameter estimates. Likelihood ratio tests are performed to test the time dependency and the statistical association of the covariates. This model was driven by breast cancer data where the maximum follow-up was close to 20 years.  相似文献   

19.
Recurrent event data occur in many clinical and observational studies (Cook and Lawless, Analysis of recurrent event data, 2007) and in these situations, there may exist a terminal event such as death that is related to the recurrent event of interest (Ghosh and Lin, Biometrics 56:554–562, 2000; Wang et al., J Am Stat Assoc 96:1057–1065, 2001; Huang and Wang, J Am Stat Assoc 99:1153–1165, 2004; Ye et al., Biometrics 63:78–87, 2007). In addition, sometimes there may exist more than one type of recurrent events, that is, one faces multivariate recurrent event data with some dependent terminal event (Chen and Cook, Biostatistics 5:129–143, 2004). It is apparent that for the analysis of such data, one has to take into account the dependence both among different types of recurrent events and between the recurrent and terminal events. In this paper, we propose a joint modeling approach for regression analysis of the data and both finite and asymptotic properties of the resulting estimates of unknown parameters are established. The methodology is applied to a set of bivariate recurrent event data arising from a study of leukemia patients.  相似文献   

20.
Jiang  Hangjin  Su  Wen  Zhao  Xingqiu 《Lifetime data analysis》2020,26(1):65-84
Lifetime Data Analysis - We consider the semiparametric regression of panel count data occurring in longitudinal follow-up studies that concern occurrence rate of certain recurrent events. The...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号