首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multiple hazard resilience is of significant practical value because most regions of the world are subject to multiple natural and technological hazards. An analysis and assessment approach for multiple hazard spatiotemporal resilience of interdependent infrastructure systems is developed using network theory and a numerical analysis. First, we define multiple hazard resilience and present a quantitative probabilistic metric based on the expansion of a single hazard deterministic resilience model. Second, we define a multiple hazard relationship analysis model with a focus on the impact of hazards on an infrastructure. Subsequently, a relationship matrix is constructed with temporal and spatial dimensions. Further, a general method for the evaluation of direct impacts on an individual infrastructure under multiple hazards is proposed. Third, we present an analysis of indirect multiple hazard impacts on interdependent infrastructures and a joint restoration model of an infrastructure system. Finally, a simplified two‐layer interdependent infrastructure network is used as a case study for illustrating the proposed methodology. The results show that temporal and spatial relationships of multiple hazards significantly influence system resilience. Moreover, the interdependence among infrastructures further magnifies the impact on resilience value. The main contribution of the article is a new multiple hazard resilience evaluation approach that is capable of integrating the impacts of multiple hazard interactions, interdependence of network components (layers), and restoration strategy.  相似文献   

2.
Vulnerability of human beings exposed to a catastrophic disaster is affected by multiple factors that include hazard intensity, environment, and individual characteristics. The traditional approach to vulnerability assessment, based on the aggregate‐area method and unsupervised learning, cannot incorporate spatial information; thus, vulnerability can be only roughly assessed. In this article, we propose Bayesian network (BN) and spatial analysis techniques to mine spatial data sets to evaluate the vulnerability of human beings. In our approach, spatial analysis is leveraged to preprocess the data; for example, kernel density analysis (KDA) and accumulative road cost surface modeling (ARCSM) are employed to quantify the influence of geofeatures on vulnerability and relate such influence to spatial distance. The knowledge‐ and data‐based BN provides a consistent platform to integrate a variety of factors, including those extracted by KDA and ARCSM to model vulnerability uncertainty. We also consider the model's uncertainty and use the Bayesian model average and Occam's Window to average the multiple models obtained by our approach to robust prediction of the risk and vulnerability. We compare our approach with other probabilistic models in the case study of seismic risk and conclude that our approach is a good means to mining spatial data sets for evaluating vulnerability.  相似文献   

3.
This study presents the first nationwide spatial assessment of flood risk to identify social vulnerability and flood exposure hotspots that support policies aimed at protecting high-risk populations and geographical regions of Canada. The study used a national-scale flood hazard dataset (pluvial, fluvial, and coastal) to estimate a 1-in-100-year flood exposure of all residential properties across 5721 census tracts. Residential flood exposure data were spatially integrated with a census-based multidimensional social vulnerability index (SoVI) that included demographic, racial/ethnic, and socioeconomic indicators influencing vulnerability. Using Bivariate Local Indicators of Spatial Association (BiLISA) cluster maps, the study identified geographic concentration of flood risk hotspots where high vulnerability coincided with high flood exposure. The results revealed considerable spatial variations in tract-level social vulnerability and flood exposure. Flood risk hotspots belonged to 410 census tracts, 21 census metropolitan areas, and eight provinces comprising about 1.7 million of the total population and 51% of half-a-million residential properties in Canada. Results identify populations and the geographic regions near the core and dense urban areas predominantly occupying those hotspots. Recognizing priority locations is critically important for government interventions and risk mitigation initiatives considering socio-physical aspects of vulnerability to flooding. Findings reinforce a better understanding of geographic flood-disadvantaged neighborhoods across Canada, where interventions are required to target preparedness, response, and recovery resources that foster socially just flood management strategies.  相似文献   

4.
In the nuclear power industry, Level 3 probabilistic risk assessment (PRA) is used to estimate damage to public health and the environment if a severe accident leads to large radiological release. Current Level 3 PRA does not have an explicit inclusion of social factors and, therefore, it is not possible to perform importance ranking of social factors for risk‐informing emergency preparedness, planning, and response (EPPR). This article offers a methodology for adapting the concept of social vulnerability, commonly used in natural hazard research, in the context of a severe nuclear power plant accident. The methodology has four steps: (1) calculating a hazard‐independent social vulnerability index for the local population; (2) developing a location‐specific representation of the maximum radiological hazard estimated from current Level 3 PRA, in a geographic information system (GIS) environment; (3) developing a GIS‐based socio‐technical risk map by combining the social vulnerability index and the location‐specific radiological hazard; and (4) conducting a risk importance measure analysis to rank the criticality of social factors based on their contribution to the socio‐technical risk. The methodology is applied using results from the 2012 Surry Power Station state‐of‐the‐art reactor consequence analysis. A radiological hazard model is generated from MELCOR accident consequence code system, translated into a GIS environment, and combined with the Center for Disease Control social vulnerability index (SVI). This research creates an opportunity to explicitly consider and rank the criticality of location‐specific SVI themes based on their influence on risk, providing input for EPPR.  相似文献   

5.
Detailed spatial representation of socioeconomic exposure and the related vulnerability to natural hazards has the potential to improve the quality and reliability of risk assessment outputs. We apply a spatially weighted dasymetric approach based on multiple ancillary data to downscale important socioeconomic variables and produce a grid data set for Italy that contains multilayered information about physical exposure, population, gross domestic product, and social vulnerability. We test the performances of our dasymetric approach compared to other spatial interpolation methods. Next, we combine the grid data set with flood hazard estimates to exemplify an application for the purpose of risk assessment.  相似文献   

6.
The negative impact of climate change continues to escalate flood risk. Floods directly and indirectly damage highway systems and disturb the socioeconomic order. In this study, we propose an integrated approach to quantitatively assess how floods impact the functioning of a highway system. The approach has three parts: (1) a multi-agent simulation model to represent traffic, heterogeneous user demand, and route choice in a highway network; (2) a flood simulator using future runoff scenarios generated from five global climate models, three representative concentration pathways (RCPs), and the CaMa-Flood model; and (3) an impact analyzer, which superimposes the simulated floods on the highway traffic simulation system, and quantifies the flood impact on a highway system based on car following model. This approach is illustrated with a case study of the Chinese highway network. The results show that (i) for different global climate models, the associated flood damage to a highway system is not linearly correlated with the forcing levels of RCPs, or with future years; (ii) floods in different years have variable impacts on regional connectivity; and (iii) extreme flood impacts can cause huge damages in highway networks; that is, in 2030, the estimated 84.5% of routes between provinces cannot be completed when the highway system is disturbed by a future major flood. These results have critical implications for transport sector policies and can be used to guide highway design and infrastructure protection. The approach can be extended to analyze other networks with spatial vulnerability, and it is an effective quantitative tool for reducing systemic disaster risk.  相似文献   

7.
针对外包信息系统脆弱性评价问题,从技术脆弱性和管理脆弱性两个方面提出了信息系统脆弱评价指标体系。在此基础上,给出外包信息系统脆弱性评价流程,构建基于技术脆弱性和管理脆弱性的二维评价矩阵模型。最后通过一个制造企业的电子商务外包案例说明该评价模型的科学性和有效性。  相似文献   

8.
Coupled infrastructure systems and complicated multihazards result in a high level of complexity and make it difficult to assess and improve the infrastructure system resilience. With a case study of the Greater Toronto Area energy system (including electric, gas, and oil transmission networks), an approach to analysis of multihazard resilience of an interdependent infrastructure system is presented in the article. Integrating network theory, spatial and numerical analysis methods, the new approach deals with the complicated multihazard relations and complex infrastructure interdependencies as spatiotemporal impacts on infrastructure systems in order to assess the dynamic system resilience. The results confirm that the effects of sequential hazards on resilience of infrastructure (network) are more complicated than the sum of single hazards. The resilience depends on the magnitude of the hazards, their spatiotemporal relationship and dynamic combined impacts, and infrastructure interdependencies. The article presents a comparison between physical and functional resilience of an electric transmission network, and finds functional resilience is always higher than physical resilience. The multiple hazards resilience evaluation approach is applicable to any type of infrastructure and hazard and it can contribute to the improvement of infrastructure planning, design, and maintenance decision making.  相似文献   

9.
This article proposes a novel mathematical optimization framework for the identification of the vulnerabilities of electric power infrastructure systems (which is a paramount example of critical infrastructure) due to natural hazards. In this framework, the potential impacts of a specific natural hazard on an infrastructure are first evaluated in terms of failure and recovery probabilities of system components. Then, these are fed into a bi‐level attacker–defender interdiction model to determine the critical components whose failures lead to the largest system functionality loss. The proposed framework bridges the gap between the difficulties of accurately predicting the hazard information in classical probability‐based analyses and the over conservatism of the pure attacker–defender interdiction models. Mathematically, the proposed model configures a bi‐level max‐min mixed integer linear programming (MILP) that is challenging to solve. For its solution, the problem is casted into an equivalent one‐level MILP that can be solved by efficient global solvers. The approach is applied to a case study concerning the vulnerability identification of the georeferenced RTS24 test system under simulated wind storms. The numerical results demonstrate the effectiveness of the proposed framework for identifying critical locations under multiple hazard events and, thus, for providing a useful tool to help decisionmakers in making more‐informed prehazard preparation decisions.  相似文献   

10.
This article presents a flood risk analysis model that considers the spatially heterogeneous nature of flood events. The basic concept of this approach is to generate a large sample of flood events that can be regarded as temporal extrapolation of flood events. These are combined with cumulative flood impact indicators, such as building damages, to finally derive time series of damages for risk estimation. Therefore, a multivariate modeling procedure that is able to take into account the spatial characteristics of flooding, the regionalization method top‐kriging, and three different impact indicators are combined in a model chain. Eventually, the expected annual flood impact (e.g., expected annual damages) and the flood impact associated with a low probability of occurrence are determined for a study area. The risk model has the potential to augment the understanding of flood risk in a region and thereby contribute to enhanced risk management of, for example, risk analysts and policymakers or insurance companies. The modeling framework was successfully applied in a proof‐of‐concept exercise in Vorarlberg (Austria). The results of the case study show that risk analysis has to be based on spatially heterogeneous flood events in order to estimate flood risk adequately.  相似文献   

11.
The risks from singular natural hazards such as a hurricane have been extensively investigated in the literature. However, little is understood about how individual and collective responses to repeated hazards change communities and impact their preparation for future events. Individual mitigation actions may drive how a community's resilience evolves under repeated hazards. In this paper, we investigate the effect that learning by homeowners can have on household mitigation decisions and on how this influences a region's vulnerability to natural hazards over time, using hurricanes along the east coast of the United States as our case study. To do this, we build an agent-based model (ABM) to simulate homeowners’ adaptation to repeated hurricanes and how this affects the vulnerability of the regional housing stock. Through a case study, we explore how different initial beliefs about the hurricane hazard and how the memory of recent hurricanes could change a community's vulnerability both under current and potential future hurricane scenarios under climate change. In some future hurricane environments, different initial beliefs can result in large differences in the region's long-term vulnerability to hurricanes. We find that when some homeowners mitigate soon after a hurricane—when their memory of the event is the strongest—it can help to substantially decrease the vulnerability of a community.  相似文献   

12.
Potential climate‐change‐related impacts to agriculture in the upper Midwest pose serious economic and ecological risks to the U.S. and the global economy. On a local level, farmers are at the forefront of responding to the impacts of climate change. Hence, it is important to understand how farmers and their farm operations may be more or less vulnerable to changes in the climate. A vulnerability index is a tool commonly used by researchers and practitioners to represent the geographical distribution of vulnerability in response to global change. Most vulnerability assessments measure objective adaptive capacity using secondary data collected by governmental agencies. However, other scholarship on human behavior has noted that sociocultural and cognitive factors, such as risk perceptions and perceived capacity, are consequential for modulating people's actual vulnerability. Thus, traditional assessments can potentially overlook people's subjective perceptions of changes in climate and extreme weather events and the extent to which people feel prepared to take necessary steps to cope with and respond to the negative effects of climate change. This article addresses this knowledge gap by: (1) incorporating perceived adaptive capacity into a vulnerability assessment; (2) using spatial smoothing to aggregate individual‐level vulnerabilities to the county level; and (3) evaluating the relationships among different dimensions of adaptive capacity to examine whether perceived capacity should be integrated into vulnerability assessments. The result suggests that vulnerability assessments that rely only on objective measures might miss important sociocognitive dimensions of capacity. Vulnerability indices and maps presented in this article can inform engagement strategies for improving environmental sustainability in the region.  相似文献   

13.
Regional flood risk caused by intensive rainfall under extreme climate conditions has increasingly attracted global attention. Mapping and evaluation of flood hazard are vital parts in flood risk assessment. This study develops an integrated framework for estimating spatial likelihood of flood hazard by coupling weighted naïve Bayes (WNB), geographic information system, and remote sensing. The north part of Fitzroy River Basin in Queensland, Australia, was selected as a case study site. The environmental indices, including extreme rainfall, evapotranspiration, net‐water index, soil water retention, elevation, slope, drainage proximity, and density, were generated from spatial data representing climate, soil, vegetation, hydrology, and topography. These indices were weighted using the statistics‐based entropy method. The weighted indices were input into the WNB‐based model to delineate a regional flood risk map that indicates the likelihood of flood occurrence. The resultant map was validated by the maximum inundation extent extracted from moderate resolution imaging spectroradiometer (MODIS) imagery. The evaluation results, including mapping and evaluation of the distribution of flood hazard, are helpful in guiding flood inundation disaster responses for the region. The novel approach presented consists of weighted grid data, image‐based sampling and validation, cell‐by‐cell probability inferring and spatial mapping. It is superior to an existing spatial naive Bayes (NB) method for regional flood hazard assessment. It can also be extended to other likelihood‐related environmental hazard studies.  相似文献   

14.
网络模型已经成为研究银行系统性风险的重要方法。然而现有研究忽视了银行系统性风险的小概率特点,同时也缺少度量银行系统性风险的统一标准。为此,本文提出了基于网络模型的银行系统性风险度量方法:银行系统性风险VaR和银行系统性风险ES。首先,本文采用蒙特卡洛模拟方法,模拟银行外部冲击造成银行间网络损失的大样本。在银行间网络损失大样本中,估计银行系统性风险VaR和银行系统性风险ES。这两个测度能够捕捉到银行间网络损失的尾部特征,解决了对比随机冲击结果无法反映银行系统性风险的问题。其次,在模拟实验中,本文利用真实银行间网络结构参数,对模拟的三种银行间网络进行校准,保证了研究结论真实性和可靠性。最后,在模拟实验中发现:(1)外部冲击会引发违约传染的连锁反应,并导致银行间网络损失分布从近似正态分布转变成尖峰厚尾分布,最后变成双峰分布。(2)网络集中度越高发生违约传染连锁反应的概率越小,但是传染的破坏力会更大。(3)银行间网络的潜在传染作用会极大的放大银行系统的风险,而且违约传染效应是呈指数增长的。  相似文献   

15.
This paper introduces a new composite indicator method integrating the spatial dependence into the robust directional model in the case of undesirable outputs. The proposed approach is advantageous compared to the traditional and conditional robust Benefit-of-the-Doubt (BoD) models in that it allows to compare the performance of individual units with local cluster of peers. The methodology has been tested on a very detailed database of Italian municipalities for the year 2015 in the municipal solid waste collection and processing sector and confirms the existence of strong local constraints linked to the disposal facilities planned by higher level Authorities.  相似文献   

16.
互联网时代,网络媒体已经成为谣言传播的重要载体,严重威胁到我国的网络空间安全和社会和谐稳定,因此加强和创新对网络媒体的监管,妥善治理突发危机事件网络舆情是各级政府面临的重大挑战。针对突发危机事件网络舆情治理的研究,本文运用演化博弈理论构建了网络媒体与地方政府双方演化博弈模型,在引入中央政府惩罚机制基础上,对比分析了网络媒体与地方政府双方行为策略选择的演化稳定均衡,同时采取多案例进行实证研究,并通过数值仿真分析对模型进行多情景推演模拟。研究结果表明:突发危机事件网络舆情传播热度与网络媒体和地方政府双方的策略选择有着直接关系;若地方政府承受突发危机事件网络舆情恶性演化造成的经济损失与信誉损失持续增大,双方演化系统都会出现周期性波动现象;引入中央政府惩罚机制后,其惩罚力度若高于网络媒体消极应对网络舆情所受到的惩罚和地方政府的监管投入成本时,最终系统会演化至良性状态,研究结论为政府部门在面对突发危机事件网络舆情治理方面提供了新思路。  相似文献   

17.
The identification of societal vulnerable counties and regions and the factors contributing to social vulnerability are crucial for effective disaster risk management. Significant advances have been made in the study of social vulnerability over the past two decades, but we still know little regarding China's societal vulnerability profiles, especially at the county level. This study investigates the county‐level spatial and temporal patterns in social vulnerability in China from 1980 to 2010. Based on China's four most recent population censuses of 2,361 counties and their corresponding socioeconomic data, a social vulnerability index for each county was created using factor analysis. Exploratory spatial data analysis, including global and local autocorrelations, was applied to reveal the spatial patterns of county‐level social vulnerability. The results demonstrate that the dynamic characteristics of China's county‐level social vulnerability are notably distinct, and the dominant contributors to societal vulnerability for all of the years studied were rural character, development (urbanization), and economic status. The spatial clustering patterns of social vulnerability to natural disasters in China exhibited a gathering–scattering–gathering pattern over time. Further investigations indicate that many counties in the eastern coastal area of China are experiencing a detectable increase in social vulnerability, whereas the societal vulnerability of many counties in the western and northern areas of China has significantly decreased over the past three decades. These findings will provide policymakers with a sound scientific basis for disaster prevention and mitigation decisions.  相似文献   

18.
Probabilistic risk assessment (PRA) is a useful tool to assess complex interconnected systems. This article leverages the capabilities of PRA tools developed for industrial and nuclear risk analysis in community resilience evaluations by modeling the food security of a community in terms of its built environment as an integrated system. To this end, we model the performance of Gilroy, CA, a moderate‐size town, with regard to disruptions in its food supply caused by a severe earthquake. The food retailers of Gilroy, along with the electrical power network, water network elements, and bridges are considered as components of a system. Fault and event trees are constructed to model the requirements for continuous food supply to community residents and are analyzed efficiently using binary decision diagrams (BDDs). The study also identifies shortcomings in approximate classical system analysis methods in assessing community resilience. Importance factors are utilized to rank the importance of various factors to the overall risk of food insecurity. Finally, the study considers the impact of various sources of uncertainties in the hazard modeling and performance of infrastructure on food security measures. The methodology can be applicable for any existing critical infrastructure system and has potential extensions to other hazards.  相似文献   

19.
Point source pollution is one of the main threats to regional environmental health. Based on a water quality model, a methodology to assess the regional risk of point source pollution is proposed. The assessment procedure includes five parts: (1) identifying risk source units and estimating source emissions using Monte Carlo algorithms; (2) observing hydrological and water quality data of the assessed area, and evaluating the selected water quality model; (3) screening out the assessment endpoints and analyzing receptor vulnerability with the Choquet fuzzy integral algorithm; (4) using the water quality model introduced in the second step to predict pollutant concentrations for various source emission scenarios and analyzing hazards of risk sources; and finally, (5) using the source hazard values and receptor vulnerability scores to estimate overall regional risk. The proposed method, based on the Water Quality Analysis Simulation Program (WASP), was applied in the region of the Taipu River, which is in the Taihu Basin, China. Results of source hazard and receptor vulnerability analysis allowed us to describe aquatic ecological, human health, and socioeconomic risks individually, and also integrated risks in the Taipu region, from a series of risk curves. Risk contributions of sources to receptors were ranked, and the spatial distribution of risk levels was presented. By changing the input conditions, we were able to estimate risks for a range of scenarios. Thus, the proposed procedure may also be used by decisionmakers for long‐term dynamic risk prediction.  相似文献   

20.
Empirical cross-hazard analysis and prediction of disaster vulnerability, resilience, and risk requires a common metric of hazard strengths across hazard types. In this paper, the authors propose an equivalent intensity scale for cross-hazard evaluation of hazard strengths of events for entire durations at locations. The proposed scale is called the Murphy Scale, after Professor Colleen Murphy. A systematic review and typology of hazard strength metrics is presented to facilitate the delineation of the defining dimensions of the proposed scale. An empirical methodology is introduced to derive equivalent intensities of hazard events on a Murphy Scale. Using historical data on impacts and hazard strength indicators of events from 2013 to 2017, the authors demonstrate the utility of the proposed methodology for computing the equivalent intensities for earthquakes and tropical cyclones. As part of a new area of research called hazard equivalency, the proposed Murphy Scale paves the way toward creating multi-hazard hazard maps. The proposed scale can also be leveraged to facilitate hazard communication regarding past and future local experiences of hazard events for enhancing multi-hazard preparedness, mitigation, and emergency response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号