首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 0 毫秒
1.
Klaus Wagner 《Risk analysis》2007,27(3):671-682
Perceptions of flash floods and landslides were analyzed in four communities of the Bavarian Alps using the mental model approach. Thirty-eight qualitative interviews, two telephone surveys with 600 respondents, and two onsite interviews (74/95 respondents) were conducted. Mental models concerning flash floods are much better developed than those for landslides because the key physical processes for flash floods are easier for the general public to recognize and understand. Mental models are influenced by the local conditions. People who have a better knowledge about the hazards are those who use many different sources to inform themselves, express fear about natural hazards, or have previous experience with hazards. Conclusions for how to improve information for the general public are discussed.  相似文献   

2.
《Risk analysis》2018,38(6):1169-1182
Flooding in urban areas during heavy rainfall, often characterized by short duration and high‐intensity events, is known as “surface water flooding.” Analyzing surface water flood risk is complex as it requires understanding of biophysical and human factors, such as the localized scale and nature of heavy precipitation events, characteristics of the urban area affected (including detailed topography and drainage networks), and the spatial distribution of economic and social vulnerability. Climate change is recognized as having the potential to enhance the intensity and frequency of heavy rainfall events. This study develops a methodology to link high spatial resolution probabilistic projections of hourly precipitation with detailed surface water flood depth maps and characterization of urban vulnerability to estimate surface water flood risk. It incorporates probabilistic information on the range of uncertainties in future precipitation in a changing climate. The method is applied to a case study of Greater London and highlights that both the frequency and spatial extent of surface water flood events are set to increase under future climate change. The expected annual damage from surface water flooding is estimated to be to be £171 million, £343 million, and £390 million/year under the baseline, 2030 high, and 2050 high climate change scenarios, respectively.  相似文献   

3.
In this article, the use of time series of satellite imagery to flood hazard mapping and flood risk assessment is presented. Flooded areas are extracted from satellite images for the flood‐prone territory, and a maximum flood extent image for each flood event is produced. These maps are further fused to determine relative frequency of inundation (RFI). The study shows that RFI values and relative water depth exhibit the same probabilistic distribution, which is confirmed by Kolmogorov‐Smirnov test. The produced RFI map can be used as a flood hazard map, especially in cases when flood modeling is complicated by lack of available data and high uncertainties. The derived RFI map is further used for flood risk assessment. Efficiency of the presented approach is demonstrated for the Katima Mulilo region (Namibia). A time series of Landsat‐5/7 satellite images acquired from 1989 to 2012 is processed to derive RFI map using the presented approach. The following direct damage categories are considered in the study for flood risk assessment: dwelling units, roads, health facilities, and schools. The produced flood risk map shows that the risk is distributed uniformly all over the region. The cities and villages with the highest risk are identified. The proposed approach has minimum data requirements, and RFI maps can be generated rapidly to assist rescuers and decisionmakers in case of emergencies. On the other hand, limitations include: strong dependence on the available data sets, and limitations in simulations with extrapolated water depth values.  相似文献   

4.
In this study, a new approach of machine learning (ML) models integrated with the analytic hierarchy process (AHP) method was proposed to develop a holistic flood risk assessment map. Flood susceptibility maps were created using ML techniques. AHP was utilized to combine flood vulnerability and exposure criteria. We selected Quang Binh province of Vietnam as a case study and collected available data, including 696 flooding locations of historical flooding events in 2007, 2010, 2016, and 2020; and flood influencing factors of elevation, slope, curvature, flow direction, flow accumulation, distance from river, river density, land cover, geology, and rainfall. These data were used to construct training and testing datasets. The susceptibility models were validated and compared using statistical techniques. An integrated flood risk assessment framework was proposed to incorporate flood hazard (flood susceptibility), flood exposure (distance from river, land use, population density, and rainfall), and flood vulnerability (poverty rate, number of freshwater stations, road density, number of schools, and healthcare facilities). Model validation suggested that deep learning has the best performance of AUC = 0.984 compared with other ensemble models of MultiBoostAB Ensemble (0.958), Random SubSpace Ensemble (0.962), and credal decision tree (AUC = 0.918). The final flood risk map shows 5075 ha (0.63%) in extremely high risk, 47,955 ha (5.95%) in high-risk, 40,460 ha (5.02%) in medium risk, 431,908 ha (53.55%) in low risk areas, and 281,127 ha (34.86%) in very low risk. The present study highlights that the integration of ML models and AHP is a promising framework for mapping flood risks in flood-prone areas.  相似文献   

5.
Natural hazards, such as major flood events, are occurring with increasing frequency and inflicting increasing levels of financial damages upon affected communities. The experience of such major flood events has brought about a significant change in attitudes to flood‐risk management, with a shift away from built engineering solutions alone towards a more multifaceted approach. Europe's experience with damaging flood episodes provided the impetus for the introduction of the European Floods Directive, requiring the establishment of flood‐risk management plans at the river‐basin scale. The effectiveness of such plans, focusing on prevention, protection, and preparedness, is dependent on adequate flood awareness and preparedness, and this is related to perception of flood risk. This is an important factor in the design and assessment of flood‐risk management. Whilst there is a modern body of literature exploring flood perception issues, there have been few examples that explore its spatial manifestations. Previous literature has examined perceived and real distance to a hazard source (such as a river, nuclear facility, landfill, or incinerator, etc.), whereas this article advances the literature by including an objectively assessed measure of distance to a perceived flood zone, using a cognitive mapping methodology. The article finds that distance to the perceived flood zone (perceived flood exposure) is a crucial factor in determining flood‐risk perception, both the cognitive and affective components. Furthermore, we find an interesting phenomenon of misperception among respondents. The article concludes by discussing the implications for flood‐risk management.  相似文献   

6.
《Risk analysis》2018,38(6):1258-1278
Although individual behavior plays a major role in community flood risk, traditional flood risk models generally do not capture information on how community policies and individual decisions impact the evolution of flood risk over time. The purpose of this study is to improve the understanding of the temporal aspects of flood risk through a combined analysis of the behavioral, engineering, and physical hazard aspects of flood risk. Additionally, the study aims to develop a new modeling approach for integrating behavior, policy, flood hazards, and engineering interventions. An agent‐based model (ABM) is used to analyze the influence of flood protection measures, individual behavior, and the occurrence of floods and near‐miss flood events on community flood risk. The ABM focuses on the following decisions and behaviors: dissemination of flood management information, installation of community flood protection, elevation of household mechanical equipment, and elevation of homes. The approach is place based, with a case study area in Fargo, North Dakota, but is focused on generalizable insights. Generally, community mitigation results in reduced future damage, and individual action, including mitigation and movement into and out of high‐risk areas, can have a significant influence on community flood risk. The results of this study provide useful insights into the interplay between individual and community actions and how it affects the evolution of flood risk. This study lends insight into priorities for future work, including the development of more in‐depth behavioral and decision rules at the individual and community level.  相似文献   

7.
This article presents a flood risk analysis model that considers the spatially heterogeneous nature of flood events. The basic concept of this approach is to generate a large sample of flood events that can be regarded as temporal extrapolation of flood events. These are combined with cumulative flood impact indicators, such as building damages, to finally derive time series of damages for risk estimation. Therefore, a multivariate modeling procedure that is able to take into account the spatial characteristics of flooding, the regionalization method top‐kriging, and three different impact indicators are combined in a model chain. Eventually, the expected annual flood impact (e.g., expected annual damages) and the flood impact associated with a low probability of occurrence are determined for a study area. The risk model has the potential to augment the understanding of flood risk in a region and thereby contribute to enhanced risk management of, for example, risk analysts and policymakers or insurance companies. The modeling framework was successfully applied in a proof‐of‐concept exercise in Vorarlberg (Austria). The results of the case study show that risk analysis has to be based on spatially heterogeneous flood events in order to estimate flood risk adequately.  相似文献   

8.
Timely warning communication and decision making are critical for reducing harm from flash flooding. To help understand and improve extreme weather risk communication and management, this study uses a mental models research approach to investigate the flash flood warning system and its risk decision context. Data were collected in the Boulder, Colorado area from mental models interviews with forecasters, public officials, and media broadcasters, who each make important interacting decisions in the warning system, and from a group modeling session with forecasters. Analysis of the data informed development of a decision‐focused model of the flash flood warning system that integrates the professionals’ perspectives. Comparative analysis of individual and group data with this model characterizes how these professionals conceptualize flash flood risks and associated uncertainty; create and disseminate flash flood warning information; and perceive how warning information is (and should be) used in their own and others’ decisions. The analysis indicates that warning system functioning would benefit from professionals developing a clearer, shared understanding of flash flood risks and the warning system, across their areas of expertise and job roles. Given the challenges in risk communication and decision making for complex, rapidly evolving hazards such as flash floods, another priority is development of improved warning content to help members of the public protect themselves when needed. Also important is professional communication with members of the public about allocation of responsibilities for managing flash flood risks, as well as improved system‐wide management of uncertainty in decisions.  相似文献   

9.
《Risk analysis》2018,38(3):489-503
Flooding remains a major problem for the United States, causing numerous deaths and damaging countless properties. To reduce the impact of flooding on communities, the U.S. government established the Community Rating System (CRS) in 1990 to reduce flood damages by incentivizing communities to engage in flood risk management initiatives that surpass those required by the National Flood Insurance Program. In return, communities enjoy discounted flood insurance premiums. Despite the fact that the CRS raises concerns about the potential for unevenly distributed impacts across different income groups, no study has examined the equity implications of the CRS. This study thus investigates the possibility of unintended consequences of the CRS by answering the question: What is the effect of the CRS on poverty and income inequality? Understanding the impacts of the CRS on poverty and income inequality is useful in fully assessing the unintended consequences of the CRS. The study estimates four fixed‐effects regression models using a panel data set of neighborhood‐level observations from 1970 to 2010. The results indicate that median incomes are lower in CRS communities, but rise in floodplains. Also, the CRS attracts poor residents, but relocates them away from floodplains. Additionally, the CRS attracts top earners, including in floodplains. Finally, the CRS encourages income inequality, but discourages income inequality in floodplains. A better understanding of these unintended consequences of the CRS on poverty and income inequality can help to improve the design and performance of the CRS and, ultimately, increase community resilience to flood disasters.  相似文献   

10.
A method is proposed for integrated probabilistic risk assessment where exposure assessment and hazard characterization are both included in a probabilistic way. The aim is to specify the probability that a random individual from a defined (sub)population will have an exposure high enough to cause a particular health effect of a predefined magnitude, the critical effect size ( CES ). The exposure level that results in exactly that CES in a particular person is that person's individual critical effect dose ( ICED ). Individuals in a population typically show variation, both in their individual exposure ( IEXP ) and in their ICED . Both the variation in IEXP and the variation in ICED are quantified in the form of probability distributions. Assuming independence between both distributions, they are combined (by Monte Carlo) into a distribution of the individual margin of exposure ( IMoE ). The proportion of the IMoE distribution below unity is the probability of critical exposure ( PoCE ) in the particular (sub)population. Uncertainties involved in the overall risk assessment (i.e., both regarding exposure and effect assessment) are quantified using Monte Carlo and bootstrap methods. This results in an uncertainty distribution for any statistic of interest, such as the probability of critical exposure ( PoCE ). The method is illustrated based on data for the case of dietary exposure to the organophosphate acephate. We present plots that concisely summarize the probabilistic results, retaining the distinction between variability and uncertainty. We show how the relative contributions from the various sources of uncertainty involved may be quantified.  相似文献   

11.
The economic value of evacuation and its relationship with flood risk acceptability in Japan were studied by applying the contingent valuation method (CVM). Flood risk acceptability here refers to the extent to which people accept the occurrence of floods, in terms of scale and frequency. The economic value of evacuation refers to people's willingness to pay (WTP) for avoiding evacuation inconvenience because of its inconvenience and the potential for certain losses as a result of evacuation. Our main finding was that over half of the people (56%) who actually evacuated in a real flood situation reported inconvenience. The greatest inconveniences were the shortages of information and food. Evacuation inconvenience can be regarded as an important factor causing the low rate of evacuation in Japan. The WTP for avoiding current inconvenience was approximately half of the estimated economic value of evacuation, implying that the current budget for evacuation is too small and should be increased to improve the conditions of evacuation sites. The economic value of evacuation can be taken into consideration in the risk assessment process in order to evaluate the efficiency of risk reduction measures. Flood risk acceptability and home ownership are two major statistically significantly determinants of the WTP. Considering that those who accept flood risk have a lower WTP for flood risk control (ex ante measures) than those who reject it, it is reasonable to think that there may be a tradeoff between the public WTPs for ex ante or ex post measures.  相似文献   

12.
Evacuation of people in case of a threat is a possible risk management strategy. Evacuation has the potential to save lives, but it can be costly with respect to time, money, and credibility. The consequences of an evacuation strategy depend on a combination of the time available, citizen response, authority response, and capacity of the infrastructure. The literature that discusses evacuations in case of flood risk management focuses, in most cases, only on a best‐case strategy as a preventive evacuation and excludes other possible strategies. This article introduces a probabilistic method, EvacuAid, to determine the benefits of different types of evacuation with regards to loss of life. The method is applied for a case study in the Netherlands for preventive and vertical evacuation due to flood risk. The results illustrate the impact of uncertainties in available time and actual conditions (e.g., the responses of citizens and authorities and the use of infrastructure). It is concluded that preparation for evacuation requires adaptive planning that takes preventive and vertical evacuation into account, based on a risk management approach.  相似文献   

13.
Damage models for natural hazards are used for decision making on reducing and transferring risk. The damage estimates from these models depend on many variables and their complex sometimes nonlinear relationships with the damage. In recent years, data‐driven modeling techniques have been used to capture those relationships. The available data to build such models are often limited. Therefore, in practice it is usually necessary to transfer models to a different context. In this article, we show that this implies the samples used to build the model are often not fully representative for the situation where they need to be applied on, which leads to a “sample selection bias.” In this article, we enhance data‐driven damage models by applying methods, not previously applied to damage modeling, to correct for this bias before the machine learning (ML) models are trained. We demonstrate this with case studies on flooding in Europe, and typhoon wind damage in the Philippines. Two sample selection bias correction methods from the ML literature are applied and one of these methods is also adjusted to our problem. These three methods are combined with stochastic generation of synthetic damage data. We demonstrate that for both case studies, the sample selection bias correction techniques reduce model errors, especially for the mean bias error this reduction can be larger than 30%. The novel combination with stochastic data generation seems to enhance these techniques. This shows that sample selection bias correction methods are beneficial for damage model transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号