首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bootstrap smoothed (bagged) parameter estimators have been proposed as an improvement on estimators found after preliminary data‐based model selection. A result of Efron in 2014 is a very convenient and widely applicable formula for a delta method approximation to the standard deviation of the bootstrap smoothed estimator. This approximation provides an easily computed guide to the accuracy of this estimator. In addition, Efron considered a confidence interval centred on the bootstrap smoothed estimator, with width proportional to the estimate of this approximation to the standard deviation. We evaluate this confidence interval in the scenario of two nested linear regression models, the full model and a simpler model, and a preliminary test of the null hypothesis that the simpler model is correct. We derive computationally convenient expressions for the ideal bootstrap smoothed estimator and the coverage probability and expected length of this confidence interval. In terms of coverage probability, this confidence interval outperforms the post‐model‐selection confidence interval with the same nominal coverage and based on the same preliminary test. We also compare the performance of the confidence interval centred on the bootstrap smoothed estimator, in terms of expected length, to the usual confidence interval, with the same minimum coverage probability, based on the full model.  相似文献   

2.
This paper considers a linear regression model with regression parameter vector β. The parameter of interest is θ= aTβ where a is specified. When, as a first step, a data‐based variable selection (e.g. minimum Akaike information criterion) is used to select a model, it is common statistical practice to then carry out inference about θ, using the same data, based on the (false) assumption that the selected model had been provided a priori. The paper considers a confidence interval for θ with nominal coverage 1 ‐ α constructed on this (false) assumption, and calls this the naive 1 ‐ α confidence interval. The minimum coverage probability of this confidence interval can be calculated for simple variable selection procedures involving only a single variable. However, the kinds of variable selection procedures used in practice are typically much more complicated. For the real‐life data presented in this paper, there are 20 variables each of which is to be either included or not, leading to 220 different models. The coverage probability at any given value of the parameters provides an upper bound on the minimum coverage probability of the naive confidence interval. This paper derives a new Monte Carlo simulation estimator of the coverage probability, which uses conditioning for variance reduction. For these real‐life data, the gain in efficiency of this Monte Carlo simulation due to conditioning ranged from 2 to 6. The paper also presents a simple one‐dimensional search strategy for parameter values at which the coverage probability is relatively small. For these real‐life data, this search leads to parameter values for which the coverage probability of the naive 0.95 confidence interval is 0.79 for variable selection using the Akaike information criterion and 0.70 for variable selection using Bayes information criterion, showing that these confidence intervals are completely inadequate.  相似文献   

3.
We consider a 2r factorial experiment with at least two replicates. Our aim is to find a confidence interval for θ, a specified linear combination of the regression parameters (for the model written as a regression, with factor levels coded as ?1 and 1). We suppose that preliminary hypothesis tests are carried out sequentially, beginning with the rth‐order interaction. After these preliminary hypothesis tests, a confidence interval for θ with nominal coverage 1 ?α is constructed under the assumption that the selected model had been given to us a priori. We describe a new efficient Monte Carlo method, which employs conditioning for variance reduction, for estimating the minimum coverage probability of the resulting confidence interval. The application of this method is demonstrated in the context of a 23 factorial experiment with two replicates and a particular contrast θ of interest. The preliminary hypothesis tests consist of the following two‐step procedure. We first test the null hypothesis that the third‐order interaction is zero against the alternative hypothesis that it is non‐zero. If this null hypothesis is accepted, we assume that this interaction is zero and proceed to the second step; otherwise, we stop. In the second step, for each of the second‐order interactions we test the null hypothesis that the interaction is zero against the alternative hypothesis that it is non‐zero. If this null hypothesis is accepted, we assume that this interaction is zero. The resulting confidence interval, with nominal coverage probability 0.95, has a minimum coverage probability that is, to a good approximation, 0.464. This shows that this confidence interval is completely inadequate.  相似文献   

4.
We investigate the exact coverage and expected length properties of the model averaged tail area (MATA) confidence interval proposed by Turek and Fletcher, CSDA, 2012, in the context of two nested, normal linear regression models. The simpler model is obtained by applying a single linear constraint on the regression parameter vector of the full model. For given length of response vector and nominal coverage of the MATA confidence interval, we consider all possible models of this type and all possible true parameter values, together with a wide class of design matrices and parameters of interest. Our results show that, while not ideal, MATA confidence intervals perform surprisingly well in our regression scenario, provided that we use the minimum weight within the class of weights that we consider on the simpler model.  相似文献   

5.
We consider a linear regression model, with the parameter of interest a specified linear combination of the components of the regression parameter vector. We suppose that, as a first step, a data-based model selection (e.g. by preliminary hypothesis tests or minimizing the Akaike information criterion – AIC) is used to select a model. It is common statistical practice to then construct a confidence interval for the parameter of interest, based on the assumption that the selected model had been given to us  a priori . This assumption is false, and it can lead to a confidence interval with poor coverage properties. We provide an easily computed finite-sample upper bound (calculated by repeated numerical evaluation of a double integral) to the minimum coverage probability of this confidence interval. This bound applies for model selection by any of the following methods: minimum AIC, minimum Bayesian information criterion (BIC), maximum adjusted  R 2, minimum Mallows'   C P   and  t -tests. The importance of this upper bound is that it delineates general categories of design matrices and model selection procedures for which this confidence interval has poor coverage properties. This upper bound is shown to be a finite-sample analogue of an earlier large-sample upper bound due to Kabaila and Leeb.  相似文献   

6.
The inverse hypergeometric distribution is of interest in applications of inverse sampling without replacement from a finite population where a binary observation is made on each sampling unit. Thus, sampling is performed by randomly choosing units sequentially one at a time until a specified number of one of the two types is selected for the sample. Assuming the total number of units in the population is known but the number of each type is not, we consider the problem of estimating this parameter. We use the Delta method to develop approximations for the variance of three parameter estimators. We then propose three large sample confidence intervals for the parameter. Based on these results, we selected a sampling of parameter values for the inverse hypergeometric distribution to empirically investigate performance of these estimators. We evaluate their performance in terms of expected probability of parameter coverage and confidence interval length calculated as means of possible outcomes weighted by the appropriate outcome probabilities for each parameter value considered. The unbiased estimator of the parameter is the preferred estimator relative to the maximum likelihood estimator and an estimator based on a negative binomial approximation, as evidenced by empirical estimates of closeness to the true parameter value. Confidence intervals based on the unbiased estimator tend to be shorter than the two competitors because of its relatively small variance but at a slight cost in terms of coverage probability.  相似文献   

7.
A generalized confidence interval for the slope parameter in linear measurement error model is proposed in this article, which is based on the relation between the slope of classical regression model and the measurement error model. The performance of the confidence interval estimation procedure is studied numerically through Monte Carlo simulation in terms of coverage probability and expected length.  相似文献   

8.
What is the interpretation of a confidence interval following estimation of a Box-Cox transformation parameter λ? Several authors have argued that confidence intervals for linear model parameters ψ can be constructed as if λ. were known in advance, rather than estimated, provided the estimand is interpreted conditionally given $\hat \lambda$. If the estimand is defined as $\psi \left( {\hat \lambda } \right)$, a function of the estimated transformation, can the nominal confidence level be regarded as a conditional coverage probability given $\hat \lambda$, where the interval is random and the estimand is fixed? Or should it be regarded as an unconditional probability, where both the interval and the estimand are random? This article investigates these questions via large-n approximations, small- σ approximations, and simulations. It is shown that, when model assumptions are satisfied and n is large, the nominal confidence level closely approximates the conditional coverage probability. When n is small, this conditional approximation is still good for regression models with small error variance. The conditional approximation can be poor for regression models with moderate error variance and single-factor ANOVA models with small to moderate error variance. In these situations the nominal confidence level still provides a good approximation for the unconditional coverage probability. This suggests that, while the estimand may be interpreted conditionally, the confidence level should sometimes be interpreted unconditionally.  相似文献   

9.
Consider panel data modelled by a linear random intercept model that includes a time‐varying covariate. Suppose that our aim is to construct a confidence interval for the slope parameter. Commonly, a Hausman pretest is used to decide whether this confidence interval is constructed using the random effects model or the fixed effects model. This post‐model‐selection confidence interval has the attractive features that it (a) is relatively short when the random effects model is correct and (b) reduces to the confidence interval based on the fixed effects model when the data and the random effects model are highly discordant. However, this confidence interval has the drawbacks that (i) its endpoints are discontinuous functions of the data and (ii) its minimum coverage can be far below its nominal coverage probability. We construct a new confidence interval that possesses these attractive features, but does not suffer from these drawbacks. This new confidence interval provides an intermediate between the post‐model‐selection confidence interval and the confidence interval obtained by always using the fixed effects model. The endpoints of the new confidence interval are smooth functions of the Hausman test statistic, whereas the endpoints of the post‐model‐selection confidence interval are discontinuous functions of this statistic.  相似文献   

10.
Consider a linear regression model with regression parameter β=(β1,…,βp) and independent normal errors. Suppose the parameter of interest is θ=aTβ, where a is specified. Define the s-dimensional parameter vector τ=CTβt, where C and t are specified. Suppose that we carry out a preliminary F test of the null hypothesis H0:τ=0 against the alternative hypothesis H1:τ≠0. It is common statistical practice to then construct a confidence interval for θ with nominal coverage 1−α, using the same data, based on the assumption that the selected model had been given to us a priori (as the true model). We call this the naive 1−α confidence interval for θ. This assumption is false and it may lead to this confidence interval having minimum coverage probability far below 1−α, making it completely inadequate. We provide a new elegant method for computing the minimum coverage probability of this naive confidence interval, that works well irrespective of how large s is. A very important practical application of this method is to the analysis of covariance. In this context, τ can be defined so that H0 expresses the hypothesis of “parallelism”. Applied statisticians commonly recommend carrying out a preliminary F test of this hypothesis. We illustrate the application of our method with a real-life analysis of covariance data set and a preliminary F test for “parallelism”. We show that the naive 0.95 confidence interval has minimum coverage probability 0.0846, showing that it is completely inadequate.  相似文献   

11.
Consider a linear regression model with independent normally distributed errors. Suppose that the scalar parameter of interest is a specified linear combination of the components of the regression parameter vector. Also suppose that we have uncertain prior information that a parameter vector, consisting of specified distinct linear combinations of these components, takes a given value. Part of our evaluation of a frequentist confidence interval for the parameter of interest is the scaled expected length, defined to be the expected length of this confidence interval divided by the expected length of the standard confidence interval for this parameter, with the same confidence coefficient. We say that a confidence interval for the parameter of interest utilizes this uncertain prior information if (a) the scaled expected length of this interval is substantially less than one when the prior information is correct, (b) the maximum value of the scaled expected length is not too large and (c) this confidence interval reverts to the standard confidence interval, with the same confidence coefficient, when the data happen to strongly contradict the prior information. We present a new confidence interval for a scalar parameter of interest, with specified confidence coefficient, that utilizes this uncertain prior information. A factorial experiment with one replicate is used to illustrate the application of this new confidence interval.  相似文献   

12.
The conditional confidence interval for the location parameter of an exponential distribution following a preliminary test is investigated. The conditional confidence interval (CCI) may be shorter than the unconditional confidence interval (UCI) in contrast to the findings for the mean of a normal distribution by Meeks and D'Agostino (1983). The conditional coverage probability of the UCI is obtained by computing the coverage probability under the conditional probability density function. It is shown that the conditional coverage probability of the UCI is not uniformly greater than or less than the nominal level.  相似文献   

13.
We develop an approach to evaluating frequentist model averaging procedures by considering them in a simple situation in which there are two‐nested linear regression models over which we average. We introduce a general class of model averaged confidence intervals, obtain exact expressions for the coverage and the scaled expected length of the intervals, and use these to compute these quantities for the model averaged profile likelihood (MPI) and model‐averaged tail area confidence intervals proposed by D. Fletcher and D. Turek. We show that the MPI confidence intervals can perform more poorly than the standard confidence interval used after model selection but ignoring the model selection process. The model‐averaged tail area confidence intervals perform better than the MPI and postmodel‐selection confidence intervals but, for the examples that we consider, offer little over simply using the standard confidence interval for θ under the full model, with the same nominal coverage.  相似文献   

14.
For the slope parameter of the measurement error model with the reliability ratio known, this article constructs a fiducial generalized confidence interval (FGCI) which is proved to have correct asymptotic coverage. Simulation results demonstrate that the FGCI often outperforms the existing intervals in terms of empirical coverage probability, average interval length, and false parameter coverage rate. Two examples are also provided to illustrate our approach.  相似文献   

15.
This paper uses graphical methods to illustrate and compare the coverage properties of a number of methods for calculating confidence intervals for the difference between two independent binomial proportions. We investigate both small‐sample and large‐sample properties of both two‐sided and one‐sided coverage, with an emphasis on asymptotic methods. In terms of aligning the smoothed coverage probability surface with the nominal confidence level, we find that the score‐based methods on the whole have the best two‐sided coverage, although they have slight deficiencies for confidence levels of 90% or lower. For an easily taught, hand‐calculated method, the Brown‐Li ‘Jeffreys’ method appears to perform reasonably well, and in most situations, it has better one‐sided coverage than the widely recommended alternatives. In general, we find that the one‐sided properties of many of the available methods are surprisingly poor. In fact, almost none of the existing asymptotic methods achieve equal coverage on both sides of the interval, even with large sample sizes, and consequently if used as a non‐inferiority test, the type I error rate (which is equal to the one‐sided non‐coverage probability) can be inflated. The only exception is the Gart‐Nam ‘skewness‐corrected’ method, which we express using modified notation in order to include a bias correction for improved small‐sample performance, and an optional continuity correction for those seeking more conservative coverage. Using a weighted average of two complementary methods, we also define a new hybrid method that almost matches the performance of the Gart‐Nam interval. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
We study confidence intervals of prescribed width for the lo-cation parameter of an exponential distribution. Asymptotic expan-sions up to terms tending to zero are obtained for the coverage probability and expected sample size. The limiting distribution of the sample size is given from which an asymptotic expression for the variance of the sample size is deduced. Sequential procedures with non-asymptotic coverage probability are also investigated  相似文献   

17.
Clinical trials often use paired binomial data as their clinical endpoint. The confidence interval is frequently used to estimate the treatment performance. Tang et al. (2009) have proposed exact and approximate unconditional methods for constructing a confidence interval in the presence of incomplete paired binary data. The approach proposed by Tang et al. can be overly conservative with large expected confidence interval width (ECIW) in some situations. We propose a profile likelihood‐based method with a Jeffreys' prior correction to construct the confidence interval. This approach generates confidence interval with a much better coverage probability and shorter ECIWs. The performances of the method along with the corrections are demonstrated through extensive simulation. Finally, three real world data sets are analyzed by all the methods. Statistical Analysis System (SAS) codes to execute the profile likelihood‐based methods are also presented. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
In this article, the hypothesis testing and interval estimation for the reliability parameter are considered in balanced and unbalanced one-way random models. The tests and confidence intervals for the reliability parameter are developed using the concepts of generalized p-value and generalized confidence interval. Furthermore, some simulation results are presented to compare the performances between the proposed approach and the existing approach. For balanced models, the simulation results indicate that the proposed approach can provide satisfactory coverage probabilities and performs better than the existing approaches across the wide array of scenarios, especially for small sample sizes. For unbalanced models, the simulation results show that the two proposed approaches perform more satisfactorily than the existing approach in most cases. Finally, the proposed approaches are illustrated using two real examples.  相似文献   

19.
Confidence interval is a basic type of interval estimation in statistics. When dealing with samples from a normal population with the unknown mean and the variance, the traditional method to construct t-based confidence intervals for the mean parameter is to treat the n sampled units as n groups and build the intervals. Here we propose a generalized method. We first divide them into several equal-sized groups and then calculate the confidence intervals with the mean values of these groups. If we define “better” in terms of the expected length of the confidence interval, then the first method is better because the expected length of the confidence interval obtained from the first method is shorter. We prove this intuition theoretically. We also specify when the elements in each group are correlated, the first method is invalid, while the second can give us correct results in terms of the coverage probability. We illustrate this with analytical expressions. In practice, when the data set is extremely large and distributed in several data centers, the second method is a good tool to get confidence intervals, in both independent and correlated cases. Some simulations and real data analyses are presented to verify our theoretical results.  相似文献   

20.
This paper considered several confidence intervals for estimating the population signal-to-noise ratio based on parametric, non-parametric and modified methods. A simulation study has been conducted to compare the performance of the interval estimators under both symmetric and skewed distributions. We reported coverage probability and average width of the interval estimators. Based on the simulation study, we observed that some of our proposed interval estimators are performing better in the sense of smaller width and coverage probability and have been recommended for the researchers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号