共查询到4条相似文献,搜索用时 0 毫秒
1.
A variety of statistical regression models have been proposed for the comparison of ROC curves for different markers across covariate groups. Pepe developed parametric models for the ROC curve that induce a semiparametric model for the market distributions to relax the strong assumptions in fully parametric models. We investigate the analysis of the power ROC curve using these ROC-GLM models compared to the parametric exponential model and the estimating equations derived from the usual partial likelihood methods in time-to-event analyses. In exploring the robustness to violations of distributional assumptions, we find that the ROC-GLM provides an extra measure of robustness. 相似文献
2.
《Journal of Statistical Computation and Simulation》2012,82(12):1827-1843
The class of beta regression models proposed by Ferrari and Cribari-Neto [Beta regression for modelling rates and proportions, Journal of Applied Statistics 31 (2004), pp. 799–815] is useful for modelling data that assume values in the standard unit interval (0, 1). The dependent variable relates to a linear predictor that includes regressors and unknown parameters through a link function. The model is also indexed by a precision parameter, which is typically taken to be constant for all observations. Some authors have used, however, variable dispersion beta regression models, i.e., models that include a regression submodel for the precision parameter. In this paper, we show how to perform testing inference on the parameters that index the mean submodel without having to model the data precision. This strategy is useful as it is typically harder to model dispersion effects than mean effects. The proposed inference procedure is accurate even under variable dispersion. We present the results of extensive Monte Carlo simulations where our testing strategy is contrasted to that in which the practitioner models the underlying dispersion and then performs testing inference. An empirical application that uses real (not simulated) data is also presented and discussed. 相似文献
3.
Leila Golparvar 《统计学通讯:理论与方法》2013,42(24):7258-7274
ABSTRACTIn this paper, under Type-I progressive hybrid censoring sample, we obtain maximum likelihood estimator of unknown parameter when the parent distribution belongs to proportional hazard rate family. We derive the conditional probability density function of the maximum likelihood estimator using moment-generating function technique. The exact confidence interval is obtained and compared by conducting a Monte Carlo simulation study for burr Type XII distribution. Finally, we obtain the Bayes and posterior regret gamma minimax estimates of the parameter under a precautionary loss function with precautionary index k = 2 and compare their behavior via a Monte Carlo simulation study. 相似文献
4.
The inflated beta regression model aims to enable the modeling of responses in the intervals (0, 1], [0, 1), or [0, 1]. In this model, hypothesis testing is often performed based on the likelihood ratio statistic. The critical values are obtained from asymptotic approximations, which may lead to distortions of size in small samples. In this sense, this article proposes the bootstrap Bartlett correction to the statistic of likelihood ratio in the inflated beta regression model. The proposed adjustment only requires a simple Monte Carlo simulation. Through extensive Monte Carlo simulations the finite sample performance (size and power) of the proposed corrected test is compared to the usual likelihood ratio test and the Skovgaard adjustment already proposed in the literature. The numerical results evidence that inference based on the proposed correction is much more reliable than that based on the usual likelihood ratio statistics and the Skovgaard adjustment. At the end of the work, an application to real data is also presented. 相似文献