首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
In this note, we consider estimating the bivariate survival function when both survival times are subject to random left truncation and one of the survival times is subject to random right censoring. Motivated by Satten and Datta [2001. The Kaplan–Meier estimator as an inverse-probability-of-censoring weighted average. Amer. Statist. 55, 207–210], we propose an inverse-probability-weighted (IPW) estimator. It involves simultaneous estimation of the bivariate survival function of the truncation variables and that of the censoring variable and the truncation variable of the uncensored components. We prove that (i) when there is no censoring, the IPW estimator reduces to NPMLE of van der Laan [1996a. Nonparametric estimation of the bivariate survival function with truncated data. J. Multivariate Anal. 58, 107–131] and (ii) when there is random left truncation and right censoring on only one of the components and the other component is always observed, the IPW estimator reduces to the estimator of Gijbels and Gürler [1998. Covariance function of a bivariate distribution function estimator for left truncated and right censored data. Statist. Sin. 1219–1232]. Based on Theorem 3.1 of van der Laan [1996a. Nonparametric estimation of the bivariate survival function with truncated data. J. Multivariate Anal. 58, 107–131, 1996b. Efficient estimation of the bivariate censoring model and repairing NPMLE. Ann. Statist. 24, 596–627], we prove that the IPW estimator is consistent under certain conditions. Finally, we examine the finite sample performance of the IPW estimator in some simulation studies. For the special case that censoring time is independent of truncation time, a simulation study is conducted to compare the performances of the IPW estimator against that of the estimator proposed by van der Laan [1996a. Nonparametric estimation of the bivariate survival function with truncated data. J. Multivariate Anal. 58, 107–131, 1996b. Efficient estimation of the bivariate censoring model and repairing NPMLE. Ann. Statist. 24, 596–627]. For the special case (i), a simulation study is conducted to compare the performances of the IPW estimator against that of the estimator proposed by Huang et al. (2001. Nonnparametric estimation of marginal distributions under bivariate truncation with application to testing for age-of-onset application. Statist. Sin. 11, 1047–1068).  相似文献   

2.
In this article, we consider shared frailty model with inverse Gaussian distribution as frailty distribution and log-logistic distribution (LLD) as baseline distribution for bivariate survival times. We fit this model to three real-life bivariate survival data sets. The problem of analyzing and estimating parameters of shared inverse Gaussian frailty is the interest of this article and then compare the results with shared gamma frailty model under the same baseline for considered three data sets. Data are analyzed using Bayesian approach to the analysis of clustered survival data in which there is a dependence of failure time observations within the same group. The variance component estimation provides the estimated dispersion of the random effects. We carried out a test for frailty (or heterogeneity) using Bayes factor. Model comparison is made using information criteria and Bayes factor. We observed that the shared inverse Gaussian frailty model with LLD as baseline is the better fit for all three bivariate data sets.  相似文献   

3.
The use of bivariate distributions plays a fundamental role in survival and reliability studies. In this paper, we consider a location scale model for bivariate survival times based on the proposal of a copula to model the dependence of bivariate survival data. For the proposed model, we consider inferential procedures based on maximum likelihood. Gains in efficiency from bivariate models are also examined in the censored data setting. For different parameter settings, sample sizes and censoring percentages, various simulation studies are performed and compared to the performance of the bivariate regression model for matched paired survival data. Sensitivity analysis methods such as local and total influence are presented and derived under three perturbation schemes. The martingale marginal and the deviance marginal residual measures are used to check the adequacy of the model. Furthermore, we propose a new measure which we call modified deviance component residual. The methodology in the paper is illustrated on a lifetime data set for kidney patients.  相似文献   

4.
A new nonparametric estimator is proposed for the copula function of a bivariate survival function for data subject to random right-censoring. We consider two censoring models: univariate and copula censoring. We show strong consistency and we obtain an i.i.d. representation for the copula estimator. In a simulation study we compare the new estimator to the one of Gribkova and Lopez [Nonparametric copula estimation under bivariate censoring; doi:10.1111/sjos.12144].  相似文献   

5.
This paper is about the analysis of paired survival data using the exponential bivariate model of Sarkar for the underlying survival times, (X,Y), subject to censoring. Under this parametric model we test parameters in the presence of covariates. We consider first, tests of hypotheses of independence and equality of survival marginals, and second, test of hypotheses of covariate effects and survival superiority of one marginal over the other are considered. For this last question we applied a statistical test based on the Union-intersection principle.  相似文献   

6.
The random effects survival model has been widely used in the recent literature as a generalization of the continuous proportional hazards model. When a random effect is present, it is known that the hazard rates are generally underestimated in the context of continuous proportional hazards models. This article establishes theorems for the influence of random effects on both univariate and bivariate discrete proportional hazards models.  相似文献   

7.
We propose a flexible semiparametric stochastic mixed effects model for bivariate cyclic longitudinal data. The model can handle either single cycle or, more generally, multiple consecutive cycle data. The approach models the mean of responses by parametric fixed effects and a smooth nonparametric function for the underlying time effects, and the relationship across the bivariate responses by a bivariate Gaussian random field and a joint distribution of random effects. The proposed model not only can model complicated individual profiles, but also allows for more flexible within-subject and between-response correlations. The fixed effects regression coefficients and the nonparametric time functions are estimated using maximum penalized likelihood, where the resulting estimator for the nonparametric time function is a cubic smoothing spline. The smoothing parameters and variance components are estimated simultaneously using restricted maximum likelihood. Simulation results show that the parameter estimates are close to the true values. The fit of the proposed model on a real bivariate longitudinal dataset of pre-menopausal women also performs well, both for a single cycle analysis and for a multiple consecutive cycle analysis. The Canadian Journal of Statistics 48: 471–498; 2020 © 2020 Statistical Society of Canada  相似文献   

8.
This paper proposes a new estimator for bivariate distribution functions under random truncation and random censoring. The new method is based on a polar coordinate transformation, which enables us to transform a bivariate survival function to a univariate survival function. A consistent estimator for the transformed univariate function is proposed. Then the univariate estimator is transformed back to a bivariate estimator. The estimator converges weakly to a zero-mean Gaussian process with an easily estimated covariance function. Consistent truncation probability estimate is also provided. Numerical studies show that the distribution estimator and truncation probability estimator perform remarkably well.  相似文献   

9.
The use of bivariate distributions plays a fundamental role in survival and reliability studies. In this paper, we introduce a location-scale model for bivariate survival times based on the copula to model the dependence of bivariate survival data with cure fraction. We create the correlation structure between the failure times using the Clayton family of copulas, which is assumed to have any distribution. It turns out that the model becomes very flexible with respect to the choice of the marginal distributions. For the proposed model, we consider inferential procedures based on constrained parameters under maximum likelihood. We derive the appropriate matrices for assessing local influence under different perturbation schemes and present some ways to perform global influence analysis. The relevance of the approach is illustrated using a real data set and a diagnostic analysis is performed to select an appropriate model.  相似文献   

10.
We consider efficient estimation of regression and association parameters jointly for bivariate current status data with the marginal proportional hazards model. Current status data occur in many fields including demographical studies and tumorigenicity experiments and several approaches have been proposed for regression analysis of univariate current status data. We discuss bivariate current status data and propose an efficient score estimation approach for the problem. In the approach, the copula model is used for joint survival function with the survival times assumed to follow the proportional hazards model marginally. Simulation studies are performed to evaluate the proposed estimates and suggest that the approach works well in practical situations. A real life data application is provided for illustration.  相似文献   

11.
Fong  Daniel Y.T.  Lam  K.F.  Lawless  J.F.  Lee  Y.W. 《Lifetime data analysis》2001,7(4):345-362
We consider recurrent event data when the duration or gap times between successive event occurrences are of intrinsic interest. Subject heterogeneity not attributed to observed covariates is usually handled by random effects which result in an exchangeable correlation structure for the gap times of a subject. Recently, efforts have been put into relaxing this restriction to allow non-exchangeable correlation. Here we consider dynamic models where random effects can vary stochastically over the gap times. We extend the traditional Gaussian variance components models and evaluate a previously proposed proportional hazards model through a simulation study and some examples. Besides, semiparametric estimation of the proportional hazards models is considered. Both models are easily used. The Gaussian models are easily interpreted in terms of the variance structure. On the other hand, the proportional hazards models would be more appropriate in the context of survival analysis, particularly in the interpretation of the regression parameters. They can be sensitive to the choice of model for random effects but not to the choice of the baseline hazard function.  相似文献   

12.
Abstract

Frailty models are used in survival analysis to account for unobserved heterogeneity in individual risks to disease and death. To analyze bivariate data on related survival times (e.g., matched pairs experiments, twin, or family data), shared frailty models were suggested. Shared frailty models are frequently used to model heterogeneity in survival analysis. The most common shared frailty model is a model in which hazard function is a product of random factor(frailty) and baseline hazard function which is common to all individuals. There are certain assumptions about the baseline distribution and distribution of frailty. In this paper, we introduce shared gamma frailty models with reversed hazard rate. We introduce Bayesian estimation procedure using Markov Chain Monte Carlo (MCMC) technique to estimate the parameters involved in the model. We present a simulation study to compare the true values of the parameters with the estimated values. Also, we apply the proposed model to the Australian twin data set.  相似文献   

13.
In many medical studies, patients may experience several events during follow-up. The times between consecutive events (gap times) are often of interest and lead to problems that have received much attention recently. In this work, we consider the estimation of the bivariate distribution function for censored gap times. Some related problems such as the estimation of the marginal distribution of the second gap time and the conditional distribution are also discussed. In this article, we introduce a nonparametric estimator of the bivariate distribution function based on Bayes’ theorem and Kaplan–Meier survival function and explore the behavior of the four estimators through simulations. Real data illustration is included.  相似文献   

14.
We propose bivariate Weibull regression model with frailty in which dependence is generated by a gamma or positive stable or power variance function distribution. We assume that the bivariate survival data follows bivariate Weibull of Hanagal (Econ Qual Control 19:83–90, 2004; Econ Qual Control 20:143–150, 2005a; Stat Pap 47:137–148, 2006a; Stat Methods, 2006b). There are some interesting situations like survival times in genetic epidemiology, dental implants of patients and twin births (both monozygotic and dizygotic) where genetic behavior (which is unknown and random) of patients follows known frailty distribution. These are the situations which motivate to study this particular model. David D. Hanagal is on leave from Department of Statistics, University of Pune, Pune 411007, India.  相似文献   

15.
In this paper we consider some non-parametric goodness-of-fit statistics for testing the partial Koziol–Green regression model. In this model, the response at a given covariate value is subject to random right censoring by two independent censoring times. One of these censoring times is informative in the sense that its survival function is some power of the survival function of the response. The goodness-of-fit statistics are based on an underlying empirical process for which large sample theory is obtained.  相似文献   

16.
We propose bivariate Weibull regression model with heterogeneity (frailty or random effect) which is generated by Weibull distribution. We assume that the bivariate survival data follow bivariate Weibull of Hanagal (Econ Qual Control 19:83–90, 2004). There are some interesting situations like survival times in genetic epidemiology, dental implants of patients and twin births (both monozygotic and dizygotic) where genetic behavior (which is unknown and random) of patients follows a known frailty distribution. These are the situations which motivate to study this particular model. We propose two-stage maximum likelihood estimation for hierarchical likelihood in the proposed model. We present a small simulation study to compare these estimates with the true value of the parameters and it is observed that these estimates are very close to the true values of the parameters.  相似文献   

17.
Multivariate failure time data also referred to as correlated or clustered failure time data, often arise in survival studies when each study subject may experience multiple events. Statistical analysis of such data needs to account for intracluster dependence. In this article, we consider a bivariate proportional hazards model using vector hazard rate, in which the covariates under study have different effect on two components of the vector hazard rate function. Estimation of the parameters as well as base line hazard function are discussed. Properties of the estimators are investigated. We illustrated the method using two real life data. A simulation study is reported to assess the performance of the estimator.  相似文献   

18.
Association models, like frailty and copula models, are frequently used to analyze clustered survival data and evaluate within-cluster associations. The assumption of noninformative censoring is commonly applied to these models, though it may not be true in many situations. In this paper, we consider bivariate competing risk data and focus on association models specified for the bivariate cumulative incidence function (CIF), a nonparametrically identifiable quantity. Copula models are proposed which relate the bivariate CIF to its corresponding univariate CIFs, similarly to independently right censored data, and accommodate frailty models for the bivariate CIF. Two estimating equations are developed to estimate the association parameter, permitting the univariate CIFs to be estimated either parametrically or nonparametrically. Goodness-of-fit tests are presented for formally evaluating the parametric models. Both estimators perform well with moderate sample sizes in simulation studies. The practical use of the methodology is illustrated in an analysis of dementia associations.  相似文献   

19.
We consider a Bayesian analysis method of paired survival data using a bivariate exponential model proposed by Moran (1967, Biometrika 54:385–394). Important features of Moran’s model include that the marginal distributions are exponential and the range of the correlation coefficient is between 0 and 1. These contrast with the popular exponential model with gamma frailty. Despite these nice properties, statistical analysis with Moran’s model has been hampered by lack of a closed form likelihood function. In this paper, we introduce a latent variable to circumvent the difficulty in the Bayesian computation. We also consider a model checking procedure using the predictive Bayesian P-value.  相似文献   

20.
Maryam Esna-Ashari 《Statistics》2016,50(6):1421-1433
In survival analysis and reliability theory, a fundamental problem is the study of lifetime properties of a live organism or system. In this regard, there have been considered and studied several models based on different concepts of ageing such as hazard rate and mean residual life. In this paper, we consider an additive-multiplicative hazard model (AMHM) and study some reliability and ageing properties of the proposed model. We then specify the bivariate models whose conditionals satisfy AMHM. Several properties of the proposed bivariate model are investigated and adequacy of the model is evaluated based on a real data set.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号