首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple competing risk distribution as a possible alternative to the Weibull distribution in lifetime analysis is proposed. This distribution corresponds to the minimum between exponential and Weibull distributions. Our motivation is to take account of both accidental and aging failures in lifetime data analysis. First, the main characteristics of this distribution are presented. Then, the estimation of its parameters are considered through maximum likelihood and Bayesian inference. In particular, the existence of a unique consistent root of the likelihood equations is proved. Decision tests to choose between an exponential, Weibull and this competing risk distribution are presented. And this alternative model is compared to the Weibull model from numerical experiments on both real and simulated data sets, especially in an industrial context.  相似文献   

2.
In this article, we focus on the general k-step step-stress accelerated life tests with Type-I censoring for two-parameter Weibull distributions based on the tampered failure rate (TFR) model. We get the optimum design for the tests under the criterion of the minimization of the asymptotic variance of the maximum likelihood estimate of the pth percentile of the lifetime under the normal operating conditions. Optimum test plans for the simple step-stress accelerated life tests under Type-I censoring are developed for the Weibull distribution and the exponential distribution in particular. Finally, an example is provided to illustrate the proposed design and a sensitivity analysis is conducted to investigate the robustness of the design.  相似文献   

3.
This article aims to estimate the parameters of the Weibull distribution in step-stress partially accelerated life tests under multiply censored data. The step partially acceleration life test is that all test units are first run simultaneously under normal conditions for a pre-specified time, and the surviving units are then run under accelerated conditions until a predetermined censoring time. The maximum likelihood estimates are used to obtaining the parameters of the Weibull distribution and the acceleration factor under multiply censored data. Additionally, the confidence intervals for the estimators are obtained. Simulation results show that the maximum likelihood estimates perform well in most cases in terms of the mean bias, errors in the root mean square and the coverage rate. An example is used to illustrate the performance of the proposed approach.  相似文献   

4.
Often in practice one is interested in the situation where the lifetime data are censored. Censorship is a common phenomenon frequently encountered when analyzing lifetime data due to time constraints. In this paper, the flexible Weibull distribution proposed in Bebbington et al. [A flexible Weibull extension, Reliab. Eng. Syst. Safety 92 (2007), pp. 719–726] is studied using maximum likelihood technics based on three different algorithms: Newton Raphson, Levenberg Marquardt and Trust Region reflective. The proposed parameter estimation method is introduced and proved to work from theoretical and practical point of view. On one hand, we apply a maximum likelihood estimation method using complete simulated and real data. On the other hand, we study for the first time the model using simulated and real data for type I censored samples. The estimation results are approved by a statistical test.  相似文献   

5.
The odd Weibull distribution is a three-parameter generalization of the Weibull and the inverse Weibull distributions having rich density and hazard shapes for modeling lifetime data. This paper explored the odd Weibull parameter regions having finite moments and examined the relation to some well-known distributions based on skewness and kurtosis functions. The existence of maximum likelihood estimators have shown with complete data for any sample size. The proof for the uniqueness of these estimators is given only when the absolute value of the second shape parameter is between zero and one. Furthermore, elements of the Fisher information matrix are obtained based on complete data using a single integral representation which have shown to exist for any parameter values. The performance of the odd Weibull distribution over various density and hazard shapes is compared with generalized gamma distribution using two different test statistics. Finally, analysis of two data sets has been performed for illustrative purposes.  相似文献   

6.
In this article, the discrete analog of Weibull geometric distribution is introduced. Discrete Weibull, discrete Rayleigh, and geometric distributions are submodels of this distribution. Some basic distributional properties, hazard function, random number generation, moments, and order statistics of this new discrete distribution are studied. Estimation of the parameters are done using maximum likelihood method. The applications of the distribution is established using two datasets.  相似文献   

7.
The power-generalized Weibull probability distribution is very often used in survival analysis mainly because different values of its parameters allow for various shapes of hazard rate such as monotone increasing/decreasing, ∩-shaped, ∪-shaped, or constant. Modified chi-squared tests based on maximum likelihood estimators of parameters that are shown to be -consistent are proposed. Power of these tests against exponentiated Weibull, three-parameter Weibull, and generalized Weibull distributions is studied using Monte Carlo simulations. It is proposed to use the left-tailed rejection region because these tests are biased with respect to the above alternatives if one will use the right-tailed rejection region. It is also shown that power of the McCulloch test investigated can be two or three times higher than that of Nikulin–Rao–Robson test with respect to the alternatives considered if expected cell frequencies are about 5.  相似文献   

8.
Abstract. We introduce fully non‐parametric two‐sample tests for testing the null hypothesis that the samples come from the same distribution if the values are only indirectly given via current status censoring. The tests are based on the likelihood ratio principle and allow the observation distributions to be different for the two samples, in contrast with earlier proposals for this situation. A bootstrap method is given for determining critical values and asymptotic theory is developed. A simulation study, using Weibull distributions, is presented to compare the power behaviour of the tests with the power of other non‐parametric tests in this situation.  相似文献   

9.
Abstract

We introduce a new family of distributions using truncated discrete Linnik distribution. This family is a rich family of distributions which includes many important families of distributions such as Marshall–Olkin family of distributions, family of distributions generated through truncated negative binomial distribution, family of distributions generated through truncated discrete Mittag–Leffler distribution etc. Some properties of the new family of distributions are derived. A particular case of the family, a five parameter generalization of Weibull distribution, namely discrete Linnik Weibull distribution is given special attention. This distribution is a generalization of many distributions, such as extended exponentiated Weibull, exponentiated Weibull, Weibull truncated negative binomial, generalized exponential truncated negative binomial, Marshall-Olkin extended Weibull, Marshall–Olkin generalized exponential, exponential truncated negative binomial, Marshall–Olkin exponential and generalized exponential. The shape properties, moments, median, distribution of order statistics, stochastic ordering and stress–strength properties of the new generalized Weibull distribution are derived. The unknown parameters of the distribution are estimated using maximum likelihood method. The discrete Linnik Weibull distribution is fitted to a survival time data set and it is shown that the distribution is more appropriate than other competitive models.  相似文献   

10.
Researchers have been developing various extensions and modified forms of the Weibull distribution to enhance its capability for modeling and fitting different data sets. In this note, we investigate the potential usefulness of the new modification to the standard Weibull distribution called odd Weibull distribution in income economic inequality studies. Some mathematical and statistical properties of this model are proposed. We obtain explicit expressions for the first incomplete moment, quantile function, Lorenz and Zenga curves and related inequality indices. In addition to the well-known stochastic order based on Lorenz curve, the stochastic order based on Zenga curve is considered. Since the new generalized Weibull distribution seems to be suitable to model wealth, financial, actuarial and especially income distributions, these findings are fundamental in the understanding of how parameter values are related to inequality. Also, the estimation of parameters by maximum likelihood and moment methods is discussed. Finally, this distribution has been fitted to United States and Austrian income data sets and has been found to fit remarkably well in compare with the other widely used income models.  相似文献   

11.
On the basis of Awad sup-entropy, the efficiency function for type-I censored sample from the Weibull distribution is numerically introduced. The properties of the derived efficiency are discussed. Furthermore, for a given efficiency, the termination time of the experiment, and the maximum likelihood estimates for the Weibull parameters, are proposed. Simulation results are tabulated and discussed. Censored and complete samples are compared for a wide range of the efficiency. The comparisons show the quality of the developed algorithms and the effectiveness of using censoring in estimating with the Weibull distribution.  相似文献   

12.
This article introduces a new generalization of the transmuted exponentiated modified Weibull distribution introduced by Eltehiwy and Ashour in 2013, using Kumaraswamy distribution introduced by Cordeiro and de Castro in 2011. We refer to the new distribution as Kumaraswamy-transmuted exponentiated modified Weibull (Kw-TEMW) distribution. The new model contains 54 lifetime distributions as special cases such as the KumaraswamyWeibull, exponentiated modified Weibull, exponentiated Weibull, exponentiated exponential, transmuted Weibull, Rayleigh, linear failure rate, and exponential distributions, among others. The properties of the new model are discussed and the maximum likelihood estimation is used to evaluate the parameters. Explicit expressions are derived for the moments and examine the order statistics. This model is capable of modeling various shapes of aging and failure criteria.  相似文献   

13.
This article proposes the maximum likelihood estimates based on bare bones particle swarm optimization (BBPSO) algorithm for estimating the parameters of Weibull distribution with censored data, which is widely used in lifetime data analysis. This approach can produce more accuracy of the parameter estimation for the Weibull distribution. Additionally, the confidence intervals for the estimators are obtained. The simulation results show that the BB PSO algorithm outperforms the Newton–Raphson method in most cases in terms of bias, root mean square of errors, and coverage rate. Two examples are used to demonstrate the performance of the proposed approach. The results show that the maximum likelihood estimates via BBPSO algorithm perform well for estimating the Weibull parameters with censored data.  相似文献   

14.
This article presents a mixture three-parameter Weibull distribution to model wind speed data. The parameters are estimated by using maximum likelihood (ML) method in which the maximization problem is regarded as a nonlinear programming with only inequality constraints and is solved numerically by the interior-point method. By applying this model to four lattice-point wind speed sequences extracted from National Centers for Environmental Prediction (NCEP) reanalysis data, it is observed that the mixture three-parameter Weibull distribution model proposed in this paper provides a better fit than the existing Weibull models for the analysis of wind speed data under study.  相似文献   

15.
In this paper, the maximum likelihood (ML) and Bayes, by using Markov chain Monte Carlo (MCMC), methods are considered to estimate the parameters of three-parameter modified Weibull distribution (MWD(β, τ, λ)) based on a right censored sample of generalized order statistics (gos). Simulation experiments are conducted to demonstrate the efficiency of the proposed methods. Some comparisons are carried out between the ML and Bayes methods by computing the mean squared errors (MSEs), Akaike's information criteria (AIC) and Bayesian information criteria (BIC) of the estimates to illustrate the paper. Three real data sets from Weibull(α, β) distribution are introduced and analyzed using the MWD(β, τ, λ) and also using the Weibull(α, β) distribution. A comparison is carried out between the mentioned models based on the corresponding Kolmogorov–Smirnov (KS) test statistic, {AIC and BIC} to emphasize that the MWD(β, τ, λ) fits the data better than the other distribution. All parameters are estimated based on type-II censored sample, censored upper record values and progressively type-II censored sample which are generated from the real data sets.  相似文献   

16.
In this paper, we propose a new three-parameter model called the exponential–Weibull distribution, which includes as special models some widely known lifetime distributions. Some mathematical properties of the proposed distribution are investigated. We derive four explicit expressions for the generalized ordinary moments and a general formula for the incomplete moments based on infinite sums of Meijer's G functions. We also obtain explicit expressions for the generating function and mean deviations. We estimate the model parameters by maximum likelihood and determine the observed information matrix. Some simulations are run to assess the performance of the maximum likelihood estimators. The flexibility of the new distribution is illustrated by means of an application to real data.  相似文献   

17.
The use of statistics based on the empirical distribution function is analysed for estimation of the scale, shape, and location parameters of the three-parameter Weibull distribution. The resulting maximum goodness of fit (MGF) estimators are compared with their maximum likelihood counterparts. In addition to the Kolmogorov–Smirnov, Cramer–von Mises, and Anderson–Darling statistics, some related empirical distribution function statistics using different weight functions are considered. The results show that the MGF estimators of the scale and shape parameters are usually more efficient than the maximum likelihood estimators when the shape parameter is smaller than 2, particularly if the sample size is large.  相似文献   

18.
For the first time, we propose a five-parameter lifetime model called the McDonald Weibull distribution to extend the Weibull, exponentiated Weibull, beta Weibull and Kumaraswamy Weibull distributions, among several other models. We obtain explicit expressions for the ordinary moments, quantile and generating functions, mean deviations and moments of the order statistics. We use the method of maximum likelihood to fit the new distribution and determine the observed information matrix. We define the log-McDonald Weibull regression model for censored data. The potentiality of the new model is illustrated by means of two real data sets.  相似文献   

19.
B   rdal   eno  lu 《Journal of applied statistics》2005,32(10):1051-1066
It is well known that the least squares method is optimal only if the error distributions are normally distributed. However, in practice, non-normal distributions are more prevalent. If the error terms have a non-normal distribution, then the efficiency of least squares estimates and tests is very low. In this paper, we consider the 2k factorial design when the distribution of error terms are Weibull W(p,σ). From the methodology of modified likelihood, we develop robust and efficient estimators for the parameters in 2k factorial design. F statistics based on modified maximum likelihood estimators (MMLE) for testing the main effects and interaction are defined. They are shown to have high powers and better robustness properties as compared to the normal theory solutions. A real data set is analysed.  相似文献   

20.
We obtain adjustments to the profile likelihood function in Weibull regression models with and without censoring. Specifically, we consider two different modified profile likelihoods: (i) the one proposed by Cox and Reid [Cox, D.R. and Reid, N., 1987, Parameter orthogonality and approximate conditional inference. Journal of the Royal Statistical Society B, 49, 1–39.], and (ii) an approximation to the one proposed by Barndorff–Nielsen [Barndorff–Nielsen, O.E., 1983, On a formula for the distribution of the maximum likelihood estimator. Biometrika, 70, 343–365.], the approximation having been obtained using the results by Fraser and Reid [Fraser, D.A.S. and Reid, N., 1995, Ancillaries and third-order significance. Utilitas Mathematica, 47, 33–53.] and by Fraser et al. [Fraser, D.A.S., Reid, N. and Wu, J., 1999, A simple formula for tail probabilities for frequentist and Bayesian inference. Biometrika, 86, 655–661.]. We focus on point estimation and likelihood ratio tests on the shape parameter in the class of Weibull regression models. We derive some distributional properties of the different maximum likelihood estimators and likelihood ratio tests. The numerical evidence presented in the paper favors the approximation to Barndorff–Nielsen's adjustment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号