首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of graphical methods for comparing the quality of prediction throughout the design space of an experiment has been explored extensively for responses modeled with standard linear models. In this paper, fraction of design space (FDS) plots are adapted to evaluate designs for generalized linear models (GLMs). Since the quality of designs for GLMs depends on the model parameters, initial parameter estimates need to be provided by the experimenter. Consequently, an important question to consider is the design's robustness to user misspecification of the initial parameter estimates. FDS plots provide a graphical way of assessing the relative merits of different designs under a variety of types of parameter misspecification. Examples using logistic and Poisson regression models with their canonical links are used to demonstrate the benefits of the FDS plots.  相似文献   

2.
Abstract

Model misspecification in generalized linear models (GLMs) occurs usually when the linear predictor and/or the link function assumed are incorrect. This article discusses the effect of such misspecification on design selection for multinomial GLMs and proposes the use of quantile dispersion graphs to select robust designs. Due to misspecification in the model, parameter estimates are usually biased and the designs are compared on the basis of their mean squared error of prediction. Several numerical examples including a real data set are presented to illustrate the proposed methodology.  相似文献   

3.
In the optimal experimental design literature, the G-optimality is defined as minimizing the maximum prediction variance over the entire experimental design space. Although the G-optimality is a highly desirable property in many applications, there are few computer algorithms developed for constructing G-optimal designs. Some existing methods employ an exhaustive search over all candidate designs, which is time-consuming and inefficient. In this paper, a new algorithm for constructing G-optimal experimental designs is developed for both linear and generalized linear models. The new algorithm is made based on the clustering of candidate or evaluation points over the design space and it is a combination of point exchange algorithm and coordinate exchange algorithm. In addition, a robust design algorithm is proposed for generalized linear models with modification of an existing method. The proposed algorithm are compared with the methods proposed by Rodriguez et al. [Generating and assessing exact G-optimal designs. J. Qual. Technol. 2010;42(1):3–20] and Borkowski [Using a genetic algorithm to generate small exact response surface designs. J. Prob. Stat. Sci. 2003;1(1):65–88] for linear models and with the simulated annealing method and the genetic algorithm for generalized linear models through several examples in terms of the G-efficiency and computation time. The result shows that the proposed algorithm can obtain a design with higher G-efficiency in a much shorter time. Moreover, the computation time of the proposed algorithm only increases polynomially when the size of model increases.  相似文献   

4.
5.
The purpose of this paper is to discuss response surface designs for multivariate generalized linear models (GLMs). Such models are considered whenever several response variables can be measured for each setting of a group of control variables, and the response variables are adequately represented by GLMs. The mean-squared error of prediction (MSEP) matrix is used to assess the quality of prediction associated with a given design. The MSEP incorporates both the prediction variance and the prediction bias, which results from using maximum likelihood estimates of the parameters of the fitted linear predictor. For a given design, quantiles of a scalar-valued function of the MSEP are obtained within a certain region of interest. The quantiles depend on the unknown parameters of the linear predictor. The dispersion of these quantiles over the space of the unknown parameters is determined and then depicted by the so-called quantile dispersion graphs. An application of the proposed methodology is presented using the special case of the bivariate binary distribution.  相似文献   

6.
Abstract

Structured sparsity has recently been a very popular technique to deal with the high-dimensional data. In this paper, we mainly focus on the theoretical problems for the overlapping group structure of generalized linear models (GLMs). Although the overlapping group lasso method for GLMs has been widely applied in some applications, the theoretical properties about it are still unknown. Under some general conditions, we presents the oracle inequalities for the estimation and prediction error of overlapping group Lasso method in the generalized linear model setting. Then, we apply these results to the so-called Logistic and Poisson regression models. It is shown that the results of the Lasso and group Lasso procedures for GLMs can be recovered by specifying the group structures in our proposed method. The effect of overlap and the performance of variable selection of our proposed method are both studied by numerical simulations. Finally, we apply our proposed method to two gene expression data sets: the p53 data and the lung cancer data.  相似文献   

7.
This paper defines collinearity for generalized linear models (GLMs), investigates its consequences and proposes diagnostic criteria. The relationship between collinearity in GLMs and standard linear models (SLMs) is explored and bounds which relate the degree of collinearity in these two models are given. Estimation based on ridge methods is discussed.  相似文献   

8.
We propose a shrinkage procedure for simultaneous variable selection and estimation in generalized linear models (GLMs) with an explicit predictive motivation. The procedure estimates the coefficients by minimizing the Kullback-Leibler divergence of a set of predictive distributions to the corresponding predictive distributions for the full model, subject to an l 1 constraint on the coefficient vector. This results in selection of a parsimonious model with similar predictive performance to the full model. Thanks to its similar form to the original Lasso problem for GLMs, our procedure can benefit from available l 1-regularization path algorithms. Simulation studies and real data examples confirm the efficiency of our method in terms of predictive performance on future observations.  相似文献   

9.
Supersaturated designs (SSDs) are factorial designs in which the number of experimental runs is smaller than the number of parameters to be estimated in the model. While most of the literature on SSDs has focused on balanced designs, the construction and analysis of unbalanced designs has not been developed to a great extent. Recent studies discuss the possible advantages of relaxing the balance requirement in construction or data analysis of SSDs, and that unbalanced designs compare favorably to balanced designs for several optimality criteria and for the way in which the data are analyzed. Moreover, the effect analysis framework of unbalanced SSDs until now is restricted to the central assumption that experimental data come from a linear model. In this article, we consider unbalanced SSDs for data analysis under the assumption of generalized linear models (GLMs), revealing that unbalanced SSDs perform well despite the unbalance property. The examination of Type I and Type II error rates through an extensive simulation study indicates that the proposed method works satisfactorily.  相似文献   

10.
Missing covariates data is a common issue in generalized linear models (GLMs). A model-based procedure arising from properly specifying joint models for both the partially observed covariates and the corresponding missing indicator variables represents a sound and flexible methodology, which lends itself to maximum likelihood estimation as the likelihood function is available in computable form. In this paper, a novel model-based methodology is proposed for the regression analysis of GLMs when the partially observed covariates are categorical. Pair-copula constructions are used as graphical tools in order to facilitate the specification of the high-dimensional probability distributions of the underlying missingness components. The model parameters are estimated by maximizing the weighted log-likelihood function by using an EM algorithm. In order to compare the performance of the proposed methodology with other well-established approaches, which include complete-cases and multiple imputation, several simulation experiments of Binomial, Poisson and Normal regressions are carried out under both missing at random and non-missing at random mechanisms scenarios. The methods are illustrated by modeling data from a stage III melanoma clinical trial. The results show that the methodology is rather robust and flexible, representing a competitive alternative to traditional techniques.  相似文献   

11.
This paper describes an EM algorithm for maximum likelihood estimation in generalized linear models (GLMs) with continuous measurement error in the explanatory variables. The algorithm is an adaptation of that for nonparametric maximum likelihood (NPML) estimation in overdispersed GLMs described in Aitkin (Statistics and Computing 6: 251–262, 1996). The measurement error distribution can be of any specified form, though the implementation described assumes normal measurement error. Neither the reliability nor the distribution of the true score of the variables with measurement error has to be known, nor are instrumental variables or replication required.Standard errors can be obtained by omitting individual variables from the model, as in Aitkin (1996).Several examples are given, of normal and Bernoulli response variables.  相似文献   

12.
We consider the problem of variable screening in ultra-high-dimensional generalized linear models (GLMs) of nonpolynomial orders. Since the popular SIS approach is extremely unstable in the presence of contamination and noise, we discuss a new robust screening procedure based on the minimum density power divergence estimator (MDPDE) of the marginal regression coefficients. Our proposed screening procedure performs well under pure and contaminated data scenarios. We provide a theoretical motivation for the use of marginal MDPDEs for variable screening from both population as well as sample aspects; in particular, we prove that the marginal MDPDEs are uniformly consistent leading to the sure screening property of our proposed algorithm. Finally, we propose an appropriate MDPDE-based extension for robust conditional screening in GLMs along with the derivation of its sure screening property. Our proposed methods are illustrated through extensive numerical studies along with an interesting real data application.  相似文献   

13.
A characterization of GLMs is given. Modification of the Gaussian GEE1, modified GEE1, was applied to heteroscedastic longitudinal data, to which linear mixed-effects models are usually applied. The modified GEE1 models scale multivariate data to homoscedastic data maintaining the correlation structure and apply usual GEE1 to homoscedastic data, which needs no-diagnostics for diagonal variances. Relationships among multivariate linear regression methods, ordinary/generalized LS, naïve/modified GEE1, and linear mixed-effects models were discussed. An application showed modified GEE1 gave most efficient parameter estimation. Correct specification of the main diagonals of heteroscedastic data variance appears to be more important for efficient mean parameter estimation.  相似文献   

14.
We consider a linear regression model where there are group structures in covariates. The group LASSO has been proposed for group variable selections. Many nonconvex penalties such as smoothly clipped absolute deviation and minimax concave penalty were extended to group variable selection problems. The group coordinate descent (GCD) algorithm is used popularly for fitting these models. However, the GCD algorithms are hard to be applied to nonconvex group penalties due to computational complexity unless the design matrix is orthogonal. In this paper, we propose an efficient optimization algorithm for nonconvex group penalties by combining the concave convex procedure and the group LASSO algorithm. We also extend the proposed algorithm for generalized linear models. We evaluate numerical efficiency of the proposed algorithm compared to existing GCD algorithms through simulated data and real data sets.  相似文献   

15.
We derive explicit formulas for Sobol's sensitivity indices (SSIs) under the generalized linear models (GLMs) with independent or multivariate normal inputs. We argue that the main-effect SSIs provide a powerful tool for variable selection under GLMs with identity links under polynomial regressions. We also show via examples that the SSI-based variable selection results are similar to the ones obtained by the random forest algorithm but without the computational burden of data permutation. Finally, applying our results to the problem of gene network discovery, we identify through the SSI analysis of a public microarray dataset several novel higher-order gene–gene interactions missed out by the more standard inference methods. The relevant functions for SSI analysis derived here under GLMs with identity, log, and logit links are implemented and made available in the R package Sobol sensitivity.  相似文献   

16.
It is known that collinearity among the explanatory variables in generalized linear models (GLMs) inflates the variance of maximum likelihood estimators. To overcome multicollinearity in GLMs, ordinary ridge estimator and restricted estimator were proposed. In this study, a restricted ridge estimator is introduced by unifying the ordinary ridge estimator and the restricted estimator in GLMs and its mean squared error (MSE) properties are discussed. The MSE comparisons are done in the context of first-order approximated estimators. The results are illustrated by a numerical example and two simulation studies are conducted with Poisson and binomial responses.  相似文献   

17.
In this article, the parametric robust regression approaches are proposed for making inferences about regression parameters in the setting of generalized linear models (GLMs). The proposed methods are able to test hypotheses on the regression coefficients in the misspecified GLMs. More specifically, it is demonstrated that with large samples, the normal and gamma regression models can be properly adjusted to become asymptotically valid for inferences about regression parameters under model misspecification. These adjusted regression models can provide the correct type I and II error probabilities and the correct coverage probability for continuous data, as long as the true underlying distributions have finite second moments.  相似文献   

18.
We present APproximated Exhaustive Search (APES), which enables fast and approximated exhaustive variable selection in Generalised Linear Models (GLMs). While exhaustive variable selection remains as the gold standard in many model selection contexts, traditional exhaustive variable selection suffers from computational feasibility issues. More precisely, there is often a high cost associated with computing maximum likelihood estimates (MLE) for all subsets of GLMs. Efficient algorithms for exhaustive searches exist for linear models, most notably the leaps‐and‐bound algorithm and, more recently, the mixed integer optimisation (MIO) algorithm. The APES method learns from observational weights in a generalised linear regression super‐model and reformulates the GLM problem as a linear regression problem. In this way, APES can approximate a true exhaustive search in the original GLM space. Where exhaustive variable selection is not computationally feasible, we propose a best‐subset search, which also closely approximates a true exhaustive search. APES is made available in both as a standalone R package as well as part of the already existing mplot package.  相似文献   

19.
This article studies design selection for generalized linear models (GLMs) using the quantile dispersion graphs (QDGs) approach in the presence of misspecification in the link and/or linear predictor. The uncertainty in the linear predictor is represented by a unknown function and estimated using kriging. For addressing misspecified link functions, a generalized family of link functions is used. Numerical examples are shown to illustrate the proposed methodology.  相似文献   

20.
神经网络模型与车险索赔频率预测   总被引:1,自引:0,他引:1       下载免费PDF全文
孟生旺 《统计研究》2012,29(3):22-26
汽车保险广受社会关注,且在财产保险公司具有举足轻重的地位,因此汽车保险的索赔频率预测模型一直是非寿险精算理论和应用研究的重点之一。目前最为流行的索赔频率预测模型是广义线性模型,其中包括泊松回归、负二项回归和泊松-逆高斯回归等。本文基于一组实际的车险损失数据,对索赔频率的各种广义线性模型与神经网络模型和回归树模型进行了比较,得出了一些新的结论,即神经网络模型的拟合效果优于广义线性模型,在广义线性模型中,泊松回归的拟合效果优于负二项回归和泊松-逆高斯回归。线性回归模型的拟合效果最差,回归树模型的拟合效果略好于线性回归模型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号