首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In early phase dose‐finding cancer studies, the objective is to determine the maximum tolerated dose, defined as the highest dose with an acceptable dose‐limiting toxicity rate. Finding this dose for drug‐combination trials is complicated because of drug–drug interactions, and many trial designs have been proposed to address this issue. These designs rely on complicated statistical models that typically are not familiar to clinicians, and are rarely used in practice. The aim of this paper is to propose a Bayesian dose‐finding design for drug combination trials based on standard logistic regression. Under the proposed design, we continuously update the posterior estimates of the model parameters to make the decisions of dose assignment and early stopping. Simulation studies show that the proposed design is competitive and outperforms some existing designs. We also extend our design to handle delayed toxicities. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Model‐based phase I dose‐finding designs rely on a single model throughout the study for estimating the maximum tolerated dose (MTD). Thus, one major concern is about the choice of the most suitable model to be used. This is important because the dose allocation process and the MTD estimation depend on whether or not the model is reliable, or whether or not it gives a better fit to toxicity data. The aim of our work was to propose a method that would remove the need for a model choice prior to the trial onset and then allow it sequentially at each patient's inclusion. In this paper, we described model checking approach based on the posterior predictive check and model comparison approach based on the deviance information criterion, in order to identify a more reliable or better model during the course of a trial and to support clinical decision making. Further, we presented two model switching designs for a phase I cancer trial that were based on the aforementioned approaches, and performed a comparison between designs with or without model switching, through a simulation study. The results showed that the proposed designs had the advantage of decreasing certain risks, such as those of poor dose allocation and failure to find the MTD, which could occur if the model is misspecified. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Drug-combination studies have become increasingly popular in oncology. One of the critical concerns in phase I drug-combination trials is the uncertainty in toxicity evaluation. Most of the existing phase I designs aim to identify the maximum tolerated dose (MTD) by reducing the two-dimensional searching space to one dimension via a prespecified model or splitting the two-dimensional space into multiple one-dimensional subspaces based on the partially known toxicity order. Nevertheless, both strategies often lead to complicated trials which may either be sensitive to model assumptions or induce longer trial durations due to subtrial split. We develop two versions of dynamic ordering design (DOD) for dose finding in drug-combination trials, where the dose-finding problem is cast in the Bayesian model selection framework. The toxicity order of dose combinations is continuously updated via a two-dimensional pool-adjacent-violators algorithm, and then the dose assignment for each incoming cohort is selected based on the optimal model under the dynamic toxicity order. We conduct extensive simulation studies to evaluate the performance of DOD in comparison with four other commonly used designs under various scenarios. Simulation results show that the two versions of DOD possess competitive performances in terms of correct MTD selection as well as safety, and we apply both versions of DOD to two real oncology trials for illustration.  相似文献   

4.
In studies of combinations of agents in phase I oncology trials, the dose–toxicity relationship may not be monotone for all combinations, in which case the toxicity probabilities follow a partial order. The continual reassessment method for partial orders (PO‐CRM) is a design for phase I trials of combinations that leans upon identifying possible complete orders associated with the partial order. This article addresses some practical design considerations not previously undertaken when describing the PO‐CRM. We describe an approach in choosing a proper subset of possible orderings, formulated according to the known toxicity relationships within a matrix of combination therapies. Other design issues, such as working model selection and stopping rules, are also discussed. We demonstrate the practical ability of PO‐CRM as a phase I design for combinations through its use in a recent trial designed at the University of Virginia Cancer Center. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
This article proposes an extension of the continual reassessment method to determine the maximum tolerated dose (MTD) in the presence of patients' heterogeneity in phase I clinical trials. To start with a simple case, we consider the covariate as a binary variable representing two groups of patients. A logistic regression model is used to establish the dose–response relationship and the design is based on the Bayesian framework. Simulation studies for six plausible dose–response scenarios show that the proposed design is likely to determine the MTD more accurately than the design that does not take covariate into consideration.  相似文献   

6.
Many phase I drug combination designs have been proposed to find the maximum tolerated combination (MTC). Due to the two‐dimension nature of drug combination trials, these designs typically require complicated statistical modeling and estimation, which limit their use in practice. In this article, we propose an easy‐to‐implement Bayesian phase I combination design, called Bayesian adaptive linearization method (BALM), to simplify the dose finding for drug combination trials. BALM takes the dimension reduction approach. It selects a subset of combinations, through a procedure called linearization, to convert the two‐dimensional dose matrix into a string of combinations that are fully ordered in toxicity. As a result, existing single‐agent dose‐finding methods can be directly used to find the MTC. In case that the selected linear path does not contain the MTC, a dose‐insertion procedure is performed to add new doses whose expected toxicity rate is equal to the target toxicity rate. Our simulation studies show that the proposed BALM design performs better than competing, more complicated combination designs.  相似文献   

7.
There is a growing need for study designs that can evaluate efficacy and toxicity outcomes simultaneously in phase I or phase I/II cancer clinical trials. Many dose‐finding approaches have been proposed; however, most of these approaches assume binary efficacy and toxicity outcomes, such as dose‐limiting toxicity (DLT), and objective responses. DLTs are often defined for short time periods. In contrast, objective responses are often defined for longer periods because of practical limitations on confirmation and the criteria used to define ‘confirmation’. This means that studies have to be carried out for unacceptably long periods of time. Previous studies have not proposed a satisfactory solution to this specific problem. Furthermore, this problem may be a barrier for practitioners who want to implement notable previous dose‐finding approaches. To cope with this problem, we propose an approach using unconfirmed early responses as the surrogate efficacy outcome for the confirmed outcome. Because it is reasonable to expect moderate positive correlation between the two outcomes and the method replaces the surrogate outcome with the confirmed outcome once it becomes available, the proposed approach can reduce irrelevant dose selection and accumulation of bias. Moreover, it is also expected that it can significantly shorten study duration. Using simulation studies, we demonstrate the positive utility of the proposed approach and provide three variations of it, all of which can be easily implemented with modified likelihood functions and outcome variable definitions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
We describe a dose escalation procedure for a combined phase I/II clinical trial. The procedure is based on a Bayesian model for the joint distribution of the occurrence of a dose limiting event and of some indicator of efficacy (both considered binary variables), making no assumptions other than monotonicity. Thus, the chances of each outcome are assumed to be non‐decreasing in dose level. We applied the procedure to the design of a placebo‐controlled, sequential trial in rheumatoid arthritis, in each stage of which patients were randomized between placebo and all dose levels that currently appeared safe and non‐futile. On the basis of data from a pilot study, we constructed five different scenarios for the dose–response relationships under which we simulated the trial and assessed the performance of the procedure. The new design appears to have satisfactory operating characteristics and can be adapted to the requirements of a range of trial situations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
One of the primary purposes of an oncology dose‐finding trial is to identify an optimal dose (OD) that is both tolerable and has an indication of therapeutic benefit for subjects in subsequent clinical trials. In addition, it is quite important to accelerate early stage trials to shorten the entire period of drug development. However, it is often challenging to make adaptive decisions of dose escalation and de‐escalation in a timely manner because of the fast accrual rate, the difference of outcome evaluation periods for efficacy and toxicity and the late‐onset outcomes. To solve these issues, we propose the time‐to‐event Bayesian optimal interval design to accelerate dose‐finding based on cumulative and pending data of both efficacy and toxicity. The new design, named “TITE‐BOIN‐ET” design, is nonparametric and a model‐assisted design. Thus, it is robust, much simpler, and easier to implement in actual oncology dose‐finding trials compared with the model‐based approaches. These characteristics are quite useful from a practical point of view. A simulation study shows that the TITE‐BOIN‐ET design has advantages compared with the model‐based approaches in both the percentage of correct OD selection and the average number of patients allocated to the ODs across a variety of realistic settings. In addition, the TITE‐BOIN‐ET design significantly shortens the trial duration compared with the designs without sequential enrollment and therefore has the potential to accelerate early stage dose‐finding trials.  相似文献   

10.
Nowadays, treatment regimens for cancer often involve a combination of drugs. The determination of the doses of each of the combined drugs in phase I dose escalation studies poses methodological challenges. The most common phase I design, the classic ‘3+3' design, has been criticized for poorly estimating the maximum tolerated dose (MTD) and for treating too many subjects at doses below the MTD. In addition, the classic ‘3+3' is not able to address the challenges posed by combinations of drugs. Here, we assume that a control drug (commonly used and well‐studied) is administered at a fixed dose in combination with a new agent (the experimental drug) of which the appropriate dose has to be determined. We propose a randomized design in which subjects are assigned to the control or to the combination of the control and experimental. The MTD is determined using a model‐based Bayesian technique based on the difference of probability of dose limiting toxicities (DLT) between the control and the combination arm. We show, through a simulation study, that this approach provides better and more accurate estimates of the MTD. We argue that this approach may differentiate between an extreme high probability of DLT observed from the control and a high probability of DLT of the combination. We also report on a fictive (simulation) analysis based on published data of a phase I trial of ifosfamide combined with sunitinib.Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Incorporating historical data has a great potential to improve the efficiency of phase I clinical trials and to accelerate drug development. For model-based designs, such as the continuous reassessment method (CRM), this can be conveniently carried out by specifying a “skeleton,” that is, the prior estimate of dose limiting toxicity (DLT) probability at each dose. In contrast, little work has been done to incorporate historical data into model-assisted designs, such as the Bayesian optimal interval (BOIN), Keyboard, and modified toxicity probability interval (mTPI) designs. This has led to the misconception that model-assisted designs cannot incorporate prior information. In this paper, we propose a unified framework that allows for incorporating historical data into model-assisted designs. The proposed approach uses the well-established “skeleton” approach, combined with the concept of prior effective sample size, thus it is easy to understand and use. More importantly, our approach maintains the hallmark of model-assisted designs: simplicity—the dose escalation/de-escalation rule can be tabulated prior to the trial conduct. Extensive simulation studies show that the proposed method can effectively incorporate prior information to improve the operating characteristics of model-assisted designs, similarly to model-based designs.  相似文献   

12.
There are several measures that are commonly used to assess performance of a multiple testing procedure (MTP). These measures include power, overall error rate (family‐wise error rate), and lack of power. In settings where the MTP is used to estimate a parameter, for example, the minimum effective dose, bias is of interest. In some studies, the parameter has a set‐like structure, and thus, bias is not well defined. Nevertheless, the accuracy of estimation is one of the essential features of an MTP in such a context. In this paper, we propose several measures based on the expected values of loss functions that resemble bias. These measures are constructed to be useful in combination drug dose response studies when the target is to identify all minimum efficacious drug combinations. One of the proposed measures allows for assigning different penalties for incorrectly overestimating and underestimating a true minimum efficacious combination. Several simple examples are considered to illustrate the proposed loss functions. Then, the expected values of these loss functions are used in a simulation study to identify the best procedure among several methods used to select the minimum efficacious combinations, where the measures take into account the investigator's preferences about possibly overestimating and/or underestimating a true minimum efficacious combination. The ideas presented in this paper can be generalized to construct measures that resemble bias in other settings. These measures can serve as an essential tool to assess performance of several methods for identifying set‐like parameters in terms of accuracy of estimation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Treatment during cancer clinical trials sometimes involves the combination of multiple drugs. In addition, in recent years there has been a trend toward phase I/II trials in which a phase I and a phase II trial are combined into a single trial to accelerate drug development. Methods for the seamless combination of phases I and II parts are currently under investigation. In the phase II part, adaptive randomization on the basis of patient efficacy outcomes allocates more patients to the dose combinations considered to have higher efficacy. Patient toxicity outcomes are used for determining admissibility to each dose combination and are not used for selection of the dose combination itself. In cases where the objective is not to find the optimum dose combination solely for efficacy but regarding both toxicity and efficacy, the need exists to allocate patients to dose combinations with consideration of the balance of existing trade‐offs between toxicity and efficacy. We propose a Bayesian hierarchical model and an adaptive randomization with consideration for the relationship with toxicity and efficacy. Using the toxicity and efficacy outcomes of patients, the Bayesian hierarchical model is used to estimate the toxicity probability and efficacy probability in each of the dose combinations. Here, we use Bayesian moving‐reference adaptive randomization on the basis of desirability computed from the obtained estimator. Computer simulations suggest that the proposed method will likely recommend a higher percentage of target dose combinations than a previously proposed method.  相似文献   

14.
Compound optimal designs are considered where one component of the design criterion is a traditional optimality criterion such as the D‐optimality criterion, and the other component accounts for higher efficacy with low toxicity. With reference to the dose‐finding problem, we suggest the technique to choose weights for the two components that makes the optimization problem simpler than the traditional penalized design. We allow general bivariate responses for efficacy and toxicity. We then extend the procedure in the presence of nondesignable covariates such as age, sex, or other health conditions. A new breast cancer treatment is considered to illustrate the procedures. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Designing Phase I clinical trials is challenging when accrual is slow or sample size is limited. The corresponding key question is: how to efficiently and reliably identify the maximum tolerated dose (MTD) using a sample size as small as possible? We propose model-assisted and model-based designs with adaptive intrapatient dose escalation (AIDE) to address this challenge. AIDE is adaptive in that the decision of conducting intrapatient dose escalation depends on both the patient's individual safety data, as well as other enrolled patient's safety data. When both data indicate reasonable safety, a patient may perform intrapatient dose escalation, generating toxicity data at more than one dose. This strategy not only provides patients the opportunity to receive higher potentially more effective doses, but also enables efficient statistical learning of the dose-toxicity profile of the treatment, which dramatically reduces the required sample size. Simulation studies show that the proposed designs are safe, robust, and efficient to identify the MTD with a sample size that is substantially smaller than conventional interpatient dose escalation designs. Practical considerations are provided and R code for implementing AIDE is available upon request.  相似文献   

16.
Immunotherapy—treatments that enlist the immune system to battle tumors—has received widespread attention in cancer research. Due to its unique features and mechanisms for treating cancer, immunotherapy requires novel clinical trial designs. We propose a Bayesian seamless phase I/II randomized design for immunotherapy trials (SPIRIT) to find the optimal biological dose (OBD) defined in terms of the restricted mean survival time. We jointly model progression‐free survival and the immune response. Progression‐free survival is used as the primary endpoint to determine the OBD, and the immune response is used as an ancillary endpoint to quickly screen out futile doses. Toxicity is monitored throughout the trial. The design consists of two seamlessly connected stages. The first stage identifies a set of safe doses. The second stage adaptively randomizes patients to the safe doses identified and uses their progression‐free survival and immune response to find the OBD. The simulation study shows that the SPIRIT has desirable operating characteristics and outperforms the conventional design.  相似文献   

17.
Various statistical models have been proposed for two‐dimensional dose finding in drug‐combination trials. However, it is often a dilemma to decide which model to use when conducting a particular drug‐combination trial. We make a comprehensive comparison of four dose‐finding methods, and for fairness, we apply the same dose‐finding algorithm under the four model structures. Through extensive simulation studies, we compare the operating characteristics of these methods in various practical scenarios. The results show that different models may lead to different design properties and that no single model performs uniformly better in all scenarios. As a result, we propose using Bayesian model averaging to overcome the arbitrariness of the model specification and enhance the robustness of the design. We assign a discrete probability mass to each model as the prior model probability and then estimate the toxicity probabilities of combined doses in the Bayesian model averaging framework. During the trial, we adaptively allocated each new cohort of patients to the most appropriate dose combination by comparing the posterior estimates of the toxicity probabilities with the prespecified toxicity target. The simulation results demonstrate that the Bayesian model averaging approach is robust under various scenarios. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Phase I clinical trials aim to identify a maximum tolerated dose (MTD), the highest possible dose that does not cause an unacceptable amount of toxicity in the patients. In trials of combination therapies, however, many different dose combinations may have a similar probability of causing a dose‐limiting toxicity, and hence, a number of MTDs may exist. Furthermore, escalation strategies in combination trials are more complex, with possible escalation/de‐escalation of either or both drugs. This paper investigates the properties of two existing proposed Bayesian adaptive models for combination therapy dose‐escalation when a number of different escalation strategies are applied. We assess operating characteristics through a series of simulation studies and show that strategies that only allow ‘non‐diagonal’ moves in the escalation process (that is, both drugs cannot increase simultaneously) are inefficient and identify fewer MTDs for Phase II comparisons. Such strategies tend to escalate a single agent first while keeping the other agent fixed, which can be a severe restriction when exploring dose surfaces using a limited sample size. Meanwhile, escalation designs based on Bayesian D‐optimality allow more varied experimentation around the dose space and, consequently, are better at identifying more MTDs. We argue that for Phase I combination trials it is sensible to take forward a number of identified MTDs for Phase II experimentation so that their efficacy can be directly compared. Researchers, therefore, need to carefully consider the escalation strategy and model that best allows the identification of these MTDs. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Understanding the dose–response relationship is a key objective in Phase II clinical development. Yet, designing a dose‐ranging trial is a challenging task, as it requires identifying the therapeutic window and the shape of the dose–response curve for a new drug on the basis of a limited number of doses. Adaptive designs have been proposed as a solution to improve both quality and efficiency of Phase II trials as they give the possibility to select the dose to be tested as the trial goes. In this article, we present a ‘shapebased’ two‐stage adaptive trial design where the doses to be tested in the second stage are determined based on the correlation observed between efficacy of the doses tested in the first stage and a set of pre‐specified candidate dose–response profiles. At the end of the trial, the data are analyzed using the generalized MCP‐Mod approach in order to account for model uncertainty. A simulation study shows that this approach gives more precise estimates of a desired target dose (e.g. ED70) than a single‐stage (fixed‐dose) design and performs as well as a two‐stage D‐optimal design. We present the results of an adaptive model‐based dose‐ranging trial in multiple sclerosis that motivated this research and was conducted using the presented methodology. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Dose-finding designs for phase-I trials aim to determine the recommended phase-II dose (RP2D) for further phase-II drug development. If the trial includes patients for whom several lines of standard therapy failed or if the toxicity of the investigated agent does not necessarily increase with dose, optimal dose-finding designs should limit the frequency of treatment with suboptimal doses. We propose a two-stage design strategy with a run-in intra-patient dose escalation part followed by a more traditional dose-finding design. We conduct simulation studies to compare the 3 + 3 design, the Bayesian Optimal Interval Design (BOIN) and the Continual Reassessment Method (CRM) with and without intra-patient dose escalation. The endpoints are accuracy, sample size, safety, and therapeutic efficiency. For scenarios where the correct RP2D is the highest dose, inclusion of an intra-patient dose escalation stage generally increases accuracy and therapeutic efficiency. However, for scenarios where the correct RP2D is below the highest dose, intra-patient dose escalation designs lead to increased risk of overdosing and an overestimation of RP2D. The magnitude of the change in operating characteristics after including an intra-patient stage is largest for the 3 + 3 design, decreases for the BOIN and is smallest for the CRM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号