首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A three‐arm trial including an experimental treatment, an active reference treatment and a placebo is often used to assess the non‐inferiority (NI) with assay sensitivity of an experimental treatment. Various hypothesis‐test‐based approaches via a fraction or pre‐specified margin have been proposed to assess the NI with assay sensitivity in a three‐arm trial. There is little work done on confidence interval in a three‐arm trial. This paper develops a hybrid approach to construct simultaneous confidence interval for assessing NI and assay sensitivity in a three‐arm trial. For comparison, we present normal‐approximation‐based and bootstrap‐resampling‐based simultaneous confidence intervals. Simulation studies evidence that the hybrid approach with the Wilson score statistic performs better than other approaches in terms of empirical coverage probability and mesial‐non‐coverage probability. An example is used to illustrate the proposed approaches.  相似文献   

2.
In the absence of placebo‐controlled trials, the efficacy of a test treatment can be alternatively examined by showing its non‐inferiority to an active control; that is, the test treatment is not worse than the active control by a pre‐specified margin. The margin is based on the effect of the active control over placebo in historical studies. In other words, the non‐inferiority setup involves a network of direct and indirect comparisons between test treatment, active controls, and placebo. Given this framework, we consider a Bayesian network meta‐analysis that models the uncertainty and heterogeneity of the historical trials into the non‐inferiority trial in a data‐driven manner through the use of the Dirichlet process and power priors. Depending on whether placebo was present in the historical trials, two cases of non‐inferiority testing are discussed that are analogs of the synthesis and fixed‐margin approach. In each of these cases, the model provides a more reliable estimate of the control given its effect in other trials in the network, and, in the case where placebo was only present in the historical trials, the model can predict the effect of the test treatment over placebo as if placebo had been present in the non‐inferiority trial. It can further answer other questions of interest, such as comparative effectiveness of the test treatment among its comparators. More importantly, the model provides an opportunity for disproportionate randomization or the use of small sample sizes by allowing borrowing of information from a network of trials to draw explicit conclusions on non‐inferiority. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Often, single‐arm trials are used in phase II to gather the first evidence of an oncological drug's efficacy, with drug activity determined through tumour response using the RECIST criterion. Provided the null hypothesis of ‘insufficient drug activity’ is rejected, the next step could be a randomised two‐arm trial. However, single‐arm trials may provide a biased treatment effect because of patient selection, and thus, this development plan may not be an efficient use of resources. Therefore, we compare the performance of development plans consisting of single‐arm trials followed by randomised two‐arm trials with stand‐alone single‐stage or group sequential randomised two‐arm trials. Through this, we are able to investigate the utility of single‐arm trials and determine the most efficient drug development plans, setting our work in the context of a published single‐arm non‐small‐cell lung cancer trial. Reference priors, reflecting the opinions of ‘sceptical’ and ‘enthusiastic’ investigators, are used to quantify and guide the suitability of single‐arm trials in this setting. We observe that the explored development plans incorporating single‐arm trials are often non‐optimal. Moreover, even the most pessimistic reference priors have a considerable probability in favour of alternative plans. Analysis suggests expected sample size savings of up to 25% could have been made, and the issues associated with single‐arm trials avoided, for the non‐small‐cell lung cancer treatment through direct progression to a group sequential randomised two‐arm trial. Careful consideration should thus be given to the use of single‐arm trials in oncological drug development when a randomised trial will follow. Copyright © 2015 The Authors. Pharmaceutical Statistics published by JohnWiley & Sons Ltd.  相似文献   

4.
In drug development, non‐inferiority tests are often employed to determine the difference between two independent binomial proportions. Many test statistics for non‐inferiority are based on the frequentist framework. However, research on non‐inferiority in the Bayesian framework is limited. In this paper, we suggest a new Bayesian index τ = P(π1 > π2 ? Δ0 | X1,X2), where X1 and X2 denote binomial random variables for trials n1 and n2, and parameters π1 and π2, respectively, and the non‐inferiority margin is Δ0 > 0. We show two calculation methods for τ, an approximate method that uses normal approximation and an exact method that uses an exact posterior PDF. We compare the approximate probability with the exact probability for τ. Finally, we present the results of actual clinical trials to show the utility of index τ. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
We consider the blinded sample size re‐estimation based on the simple one‐sample variance estimator at an interim analysis. We characterize the exact distribution of the standard two‐sample t‐test statistic at the final analysis. We describe a simulation algorithm for the evaluation of the probability of rejecting the null hypothesis at given treatment effect. We compare the blinded sample size re‐estimation method with two unblinded methods with respect to the empirical type I error, the empirical power, and the empirical distribution of the standard deviation estimator and final sample size. We characterize the type I error inflation across the range of standardized non‐inferiority margin for non‐inferiority trials, and derive the adjusted significance level to ensure type I error control for given sample size of the internal pilot study. We show that the adjusted significance level increases as the sample size of the internal pilot study increases. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
A 3‐arm trial design that includes an experimental treatment, an active reference treatment, and a placebo is useful for assessing the noninferiority of an experimental treatment. The inclusion of a placebo arm enables the assessment of assay sensitivity and internal validation, in addition to the testing of the noninferiority of the experimental treatment compared with the reference treatment. In 3‐arm noninferiority trials, various statistical test procedures have been considered to evaluate the following 3 hypotheses: (i) superiority of the experimental treatment over the placebo, (ii) superiority of the reference treatment over the placebo, and (iii) noninferiority of the experimental treatment compared with the reference treatment. However, hypothesis (ii) can be insufficient and may not accurately assess the assay sensitivity for the noninferiority of the experimental treatment compared with the reference treatment. Thus, demonstrating that the superiority of the reference treatment over the placebo is greater than the noninferiority margin (the nonsuperiority of the reference treatment compared with the placebo) can be necessary. Here, we propose log‐rank statistical procedures for evaluating data obtained from 3‐arm noninferiority trials to assess assay sensitivity with a prespecified margin Δ. In addition, we derive the approximate sample size and optimal allocation required to minimize the total sample size and that of the placebo treatment sample size, hierarchically.  相似文献   

7.
The analysis of time‐to‐event data typically makes the censoring at random assumption, ie, that—conditional on covariates in the model—the distribution of event times is the same, whether they are observed or unobserved (ie, right censored). When patients who remain in follow‐up stay on their assigned treatment, then analysis under this assumption broadly addresses the de jure, or “while on treatment strategy” estimand. In such cases, we may well wish to explore the robustness of our inference to more pragmatic, de facto or “treatment policy strategy,” assumptions about the behaviour of patients post‐censoring. This is particularly the case when censoring occurs because patients change, or revert, to the usual (ie, reference) standard of care. Recent work has shown how such questions can be addressed for trials with continuous outcome data and longitudinal follow‐up, using reference‐based multiple imputation. For example, patients in the active arm may have their missing data imputed assuming they reverted to the control (ie, reference) intervention on withdrawal. Reference‐based imputation has two advantages: (a) it avoids the user specifying numerous parameters describing the distribution of patients' postwithdrawal data and (b) it is, to a good approximation, information anchored, so that the proportion of information lost due to missing data under the primary analysis is held constant across the sensitivity analyses. In this article, we build on recent work in the survival context, proposing a class of reference‐based assumptions appropriate for time‐to‐event data. We report a simulation study exploring the extent to which the multiple imputation estimator (using Rubin's variance formula) is information anchored in this setting and then illustrate the approach by reanalysing data from a randomized trial, which compared medical therapy with angioplasty for patients presenting with angina.  相似文献   

8.
We are concerned with a situation in which we would like to test multiple hypotheses with tests whose p‐values cannot be computed explicitly but can be approximated using Monte Carlo simulation. This scenario occurs widely in practice. We are interested in obtaining the same rejections and non‐rejections as the ones obtained if the p‐values for all hypotheses had been available. The present article introduces a framework for this scenario by providing a generic algorithm for a general multiple testing procedure. We establish conditions that guarantee that the rejections and non‐rejections obtained through Monte Carlo simulations are identical to the ones obtained with the p‐values. Our framework is applicable to a general class of step‐up and step‐down procedures, which includes many established multiple testing corrections such as the ones of Bonferroni, Holm, Sidak, Hochberg or Benjamini–Hochberg. Moreover, we show how to use our framework to improve algorithms available in the literature in such a way as to yield theoretical guarantees on their results. These modifications can easily be implemented in practice and lead to a particular way of reporting multiple testing results as three sets together with an error bound on their correctness, demonstrated exemplarily using a real biological dataset.  相似文献   

9.
Network meta‐analysis can be implemented by using arm‐based or contrast‐based models. Here we focus on arm‐based models and fit them using generalized linear mixed model procedures. Full maximum likelihood (ML) estimation leads to biased trial‐by‐treatment interaction variance estimates for heterogeneity. Thus, our objective is to investigate alternative approaches to variance estimation that reduce bias compared with full ML. Specifically, we use penalized quasi‐likelihood/pseudo‐likelihood and hierarchical (h) likelihood approaches. In addition, we consider a novel model modification that yields estimators akin to the residual maximum likelihood estimator for linear mixed models. The proposed methods are compared by simulation, and 2 real datasets are used for illustration. Simulations show that penalized quasi‐likelihood/pseudo‐likelihood and h‐likelihood reduce bias and yield satisfactory coverage rates. Sum‐to‐zero restriction and baseline contrasts for random trial‐by‐treatment interaction effects, as well as a residual ML‐like adjustment, also reduce bias compared with an unconstrained model when ML is used, but coverage rates are not quite as good. Penalized quasi‐likelihood/pseudo‐likelihood and h‐likelihood are therefore recommended.  相似文献   

10.
Graphical sensitivity analyses have recently been recommended for clinical trials with non‐ignorable missing outcome. We demonstrate an adaptation of this methodology for a continuous outcome of a trial of three cognitive‐behavioural therapies for mild depression in primary care, in which one arm had unexpectedly high levels of missing data. Fixed‐value and multiple imputations from a normal distribution (assuming either varying mean and fixed standard deviation, or fixed mean and varying standard deviation) were used to obtain contour plots of the contrast estimates with their P‐values superimposed, their confidence intervals, and the root mean square errors. Imputation was based either on the outcome value alone, or on change from baseline. The plots showed fixed‐value imputation to be more sensitive than imputing from a normal distribution, but the normally distributed imputations were subject to sampling noise. The contours of the sensitivity plots were close to linear in appearance, with the slope approximately equal to the ratio of the proportions of subjects with missing data in each trial arm.  相似文献   

11.
In this paper, we consider non‐parametric copula inference under bivariate censoring. Based on an estimator of the joint cumulative distribution function, we define a discrete and two smooth estimators of the copula. The construction that we propose is valid for a large range of estimators of the distribution function and therefore for a large range of bivariate censoring frameworks. Under some conditions on the tails of the distributions, the weak convergence of the corresponding copula processes is obtained in l([0,1]2). We derive the uniform convergence rates of the copula density estimators deduced from our smooth copula estimators. Investigation of the practical behaviour of these estimators is performed through a simulation study and two real data applications, corresponding to different censoring settings. We use our non‐parametric estimators to define a goodness‐of‐fit procedure for parametric copula models. A new bootstrap scheme is proposed to compute the critical values.  相似文献   

12.
The problem of comparing two independent groups of univariate data in the sense of testing for equivalence is considered for a fully nonparametric setting. The distribution of the data within each group may be a mixture of both a continuous and a discrete component, and no assumptions are made regarding the way in which the distributions of the two groups of data may differ from each other – in particular, the assumption of a shift model is avoided. The proposed equivalence testing procedure for this scenario refers to the median of the independent difference distribution, i.e. to the median of the differences between independent observations from the test group and the reference group, respectively. The procedure provides an asymptotic equivalence test, which is symmetric with respect to the roles of ‘test’ and ‘reference’. It can be described either as a two‐one‐sided‐tests (TOST) approach, or equivalently as a confidence interval inclusion rule. A one‐sided variant of the approach can be applied analogously to non‐inferiority testing problems. The procedure may be generalised to equivalence testing with respect to quantiles other than the median, and is closely related to tolerance interval type inference. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Recently, molecularly targeted agents and immunotherapy have been advanced for the treatment of relapse or refractory cancer patients, where disease progression‐free survival or event‐free survival is often a primary endpoint for the trial design. However, methods to evaluate two‐stage single‐arm phase II trials with a time‐to‐event endpoint are currently processed under an exponential distribution, which limits application of real trial designs. In this paper, we developed an optimal two‐stage design, which is applied to the four commonly used parametric survival distributions. The proposed method has advantages compared with existing methods in that the choice of underlying survival model is more flexible and the power of the study is more adequately addressed. Therefore, the proposed two‐stage design can be routinely used for single‐arm phase II trial designs with a time‐to‐event endpoint as a complement to the commonly used Simon's two‐stage design for the binary outcome.  相似文献   

14.
Bayesian methods are increasingly used in proof‐of‐concept studies. An important benefit of these methods is the potential to use informative priors, thereby reducing sample size. This is particularly relevant for treatment arms where there is a substantial amount of historical information such as placebo and active comparators. One issue with using an informative prior is the possibility of a mismatch between the informative prior and the observed data, referred to as prior‐data conflict. We focus on two methods for dealing with this: a testing approach and a mixture prior approach. The testing approach assesses prior‐data conflict by comparing the observed data to the prior predictive distribution and resorting to a non‐informative prior if prior‐data conflict is declared. The mixture prior approach uses a prior with a precise and diffuse component. We assess these approaches for the normal case via simulation and show they have some attractive features as compared with the standard one‐component informative prior. For example, when the discrepancy between the prior and the data is sufficiently marked, and intuitively, one feels less certain about the results, both the testing and mixture approaches typically yield wider posterior‐credible intervals than when there is no discrepancy. In contrast, when there is no discrepancy, the results of these approaches are typically similar to the standard approach. Whilst for any specific study, the operating characteristics of any selected approach should be assessed and agreed at the design stage; we believe these two approaches are each worthy of consideration. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Clinical trials are often designed to compare continuous non‐normal outcomes. The conventional statistical method for such a comparison is a non‐parametric Mann–Whitney test, which provides a P‐value for testing the hypothesis that the distributions of both treatment groups are identical, but does not provide a simple and straightforward estimate of treatment effect. For that, Hodges and Lehmann proposed estimating the shift parameter between two populations and its confidence interval (CI). However, such a shift parameter does not have a straightforward interpretation, and its CI contains zero in some cases when Mann–Whitney test produces a significant result. To overcome the aforementioned problems, we introduce the use of the win ratio for analysing such data. Patients in the new and control treatment are formed into all possible pairs. For each pair, the new treatment patient is labelled a ‘winner’ or a ‘loser’ if it is known who had the more favourable outcome. The win ratio is the total number of winners divided by the total numbers of losers. A 95% CI for the win ratio can be obtained using the bootstrap method. Statistical properties of the win ratio statistic are investigated using two real trial data sets and six simulation studies. Results show that the win ratio method has about the same power as the Mann–Whitney method. We recommend the use of the win ratio method for estimating the treatment effect (and CI) and the Mann–Whitney method for calculating the P‐value for comparing continuous non‐Normal outcomes when the amount of tied pairs is small. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Abstract. This paper proposes, implements and investigates a new non‐parametric two‐sample test for detecting stochastic dominance. We pose the question of detecting the stochastic dominance in a non‐standard way. This is motivated by existing evidence showing that standard formulations and pertaining procedures may lead to serious errors in inference. The procedure that we introduce matches testing and model selection. More precisely, we reparametrize the testing problem in terms of Fourier coefficients of well‐known comparison densities. Next, the estimated Fourier coefficients are used to form a kind of signed smooth rank statistic. In such a setting, the number of Fourier coefficients incorporated into the statistic is a smoothing parameter. We determine this parameter via some flexible selection rule. We establish the asymptotic properties of the new test under null and alternative hypotheses. The finite sample performance of the new solution is demonstrated through Monte Carlo studies and an application to a set of survival times.  相似文献   

17.
Abstract. A non‐parametric rank‐based test of exchangeability for bivariate extreme‐value copulas is first proposed. The two key ingredients of the suggested approach are the non‐parametric rank‐based estimators of the Pickands dependence function recently studied by Genest and Segers, and a multiplier technique for obtaining approximate p‐values for the derived statistics. The proposed approach is then extended to left‐tail decreasing dependence structures that are not necessarily extreme‐value copulas. Large‐scale Monte Carlo experiments are used to investigate the level and power of the various versions of the test and show that the proposed procedure can be substantially more powerful than tests of exchangeability derived directly from the empirical copula. The approach is illustrated on well‐known financial data.  相似文献   

18.
Phase II clinical trials designed for evaluating a drug's treatment effect can be either single‐arm or double‐arm. A single‐arm design tests the null hypothesis that the response rate of a new drug is lower than a fixed threshold, whereas a double‐arm scheme takes a more objective comparison of the response rate between the new treatment and the standard of care through randomization. Although the randomized design is the gold standard for efficacy assessment, various situations may arise where a single‐arm pilot study prior to a randomized trial is necessary. To combine the single‐ and double‐arm phases and pool the information together for better decision making, we propose a Single‐To‐double ARm Transition design (START) with switching hypotheses tests, where the first stage compares the new drug's response rate with a minimum required level and imposes a continuation criterion, and the second stage utilizes randomization to determine the treatment's superiority. We develop a software package in R to calibrate the frequentist error rates and perform simulation studies to assess the trial characteristics. Finally, a metastatic pancreatic cancer trial is used for illustrating the decision rules under the proposed START design.  相似文献   

19.
A sample size justification is a vital part of any trial design. However, estimating the number of participants required to give a meaningful result is not always straightforward. A number of components are required to facilitate a suitable sample size calculation. In this paper, the steps for conducting sample size calculations for non‐inferiority and equivalence trials are summarised. Practical advice and examples are provided that illustrate how to carry out the calculations by hand and using the app SampSize. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Abstract. Although generalized cross‐validation (GCV) has been frequently applied to select bandwidth when kernel methods are used to estimate non‐parametric mixed‐effect models in which non‐parametric mean functions are used to model covariate effects, and additive random effects are applied to account for overdispersion and correlation, the optimality of the GCV has not yet been explored. In this article, we construct a kernel estimator of the non‐parametric mean function. An equivalence between the kernel estimator and a weighted least square type estimator is provided, and the optimality of the GCV‐based bandwidth is investigated. The theoretical derivations also show that kernel‐based and spline‐based GCV give very similar asymptotic results. This provides us with a solid base to use kernel estimation for mixed‐effect models. Simulation studies are undertaken to investigate the empirical performance of the GCV. A real data example is analysed for illustration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号