首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 15 毫秒
1.
We consider data with a continuous outcome that is missing at random and a fully observed set of covariates. We compare by simulation a variety of doubly-robust (DR) estimators for estimating the mean of the outcome. An estimator is DR if it is consistent when either the regression model for the mean function or the propensity to respond is correctly specified. Performance of different methods is compared in terms of root mean squared error of the estimates and width and coverage of confidence intervals or posterior credibility intervals in repeated samples. Overall, the DR methods tended to yield better inference than the incorrect model when either the propensity or mean model is correctly specified, but were less successful for small sample sizes, where the asymptotic DR property is less consequential. Two methods tended to outperform the other DR methods: penalized spline of propensity prediction [Little RJA, An H. Robust likelihood-based analysis of multivariate data with missing values. Statist Sinica. 2004;14:949–968] and the robust method proposed in [Cao W, Tsiatis AA, Davidian M. Improving efficiency and robustness of the doubly robust estimator for a population mean with incomplete data. Biometrika. 2009;96:723–734].  相似文献   

2.
Regulatory agencies typically evaluate the efficacy and safety of new interventions and grant commercial approval based on randomized controlled trials (RCTs). Other major healthcare stakeholders, such as insurance companies and health technology assessment agencies, while basing initial access and reimbursement decisions on RCT results, are also keenly interested in whether results observed in idealized trial settings will translate into comparable outcomes in real world settings—that is, into so-called “real world” effectiveness. Unfortunately, evidence of real world effectiveness for new interventions is not available at the time of initial approval. To bridge this gap, statistical methods are available to extend the estimated treatment effect observed in a RCT to a target population. The generalization is done by weighting the subjects who participated in a RCT so that the weighted trial population resembles a target population. We evaluate a variety of alternative estimation and weight construction procedures using both simulations and a real world data example using two clinical trials of an investigational intervention for Alzheimer's disease. Our results suggest an optimal approach to estimation depends on the characteristics of source and target populations, including degree of selection bias and treatment effect heterogeneity.  相似文献   

3.
The generalized doubly robust estimator is proposed for estimating the average treatment effect (ATE) of multiple treatments based on the generalized propensity score (GPS). In medical researches where observational studies are conducted, estimations of ATEs are usually biased since the covariate distributions could be unbalanced among treatments. To overcome this problem, Imbens [The role of the propensity score in estimating dose-response functions, Biometrika 87 (2000), pp. 706–710] and Feng et al. [Generalized propensity score for estimating the average treatment effect of multiple treatments, Stat. Med. (2011), in press. Available at: http://onlinelibrary.wiley.com/doi/10.1002/sim.4168/abstract] proposed weighted estimators that are extensions of a ratio estimator based on GPS to estimate ATEs with multiple treatments. However, the ratio estimator always produces a larger empirical sample variance than the doubly robust estimator, which estimates an ATE between two treatments based on the estimated propensity score (PS). We conduct a simulation study to compare the performance of our proposed estimator with Imbens’ and Feng et al.’s estimators, and simulation results show that our proposed estimator outperforms their estimators in terms of bias, empirical sample variance and mean-squared error of the estimated ATEs.  相似文献   

4.
We propose a locally efficient estimator for a class of semiparametric data combination problems. A leading estimand in this class is the average treatment effect on the treated (ATT). Data combination problems are related to, but distinct from, the class of missing data problems with data missing at random (of which the average treatment effect (ATE) estimand is a special case). Our estimator also possesses a double robustness property. Our procedure may be used to efficiently estimate, among other objects, the ATT, the two-sample instrumental variables model (TSIV), counterfactual distributions, poverty maps, and semiparametric difference-in-differences. In an empirical application, we use our procedure to characterize residual Black–White wage inequality after flexibly controlling for “premarket” differences in measured cognitive achievement. Supplementary materials for this article are available online.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号