首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

This paper is concerned with model averaging procedure for varying-coefficient partially linear models. We proposed a jackknife model averaging method that involves minimizing a leave-one-out cross-validation criterion, and developed a computational shortcut to optimize the cross-validation criterion for weight choice. The resulting model average estimator is shown to be asymptotically optimal in terms of achieving the smallest possible squared error. The simulation studies have provided evidence of the superiority of the proposed procedures. Our approach is further applied to a real data.  相似文献   

2.
Important progress has been made with model averaging methods over the past decades. For spatial data, however, the idea of model averaging has not been applied well. This article studies model averaging methods for the spatial geostatistical linear model. A spatial Mallows criterion is developed to choose weights for the model averaging estimator. The resulting estimator can achieve asymptotic optimality in terms of L2 loss. Simulation experiments reveal that our proposed estimator is superior to the model averaging estimator by the Mallows criterion developed for ordinary linear models [Hansen, 2007] and the model selection estimator using the corrected Akaike's information criterion, developed for geostatistical linear models [Hoeting et al., 2006]. The Canadian Journal of Statistics 47: 336–351; 2019 © 2019 Statistical Society of Canada  相似文献   

3.
We propose a profile conditional likelihood approach to handle missing covariates in the general semiparametric transformation regression model. The method estimates the marginal survival function by the Kaplan-Meier estimator, and then estimates the parameters of the survival model and the covariate distribution from a conditional likelihood, substituting the Kaplan-Meier estimator for the marginal survival function in the conditional likelihood. This method is simpler than full maximum likelihood approaches, and yields consistent and asymptotically normally distributed estimator of the regression parameter when censoring is independent of the covariates. The estimator demonstrates very high relative efficiency in simulations. When compared with complete-case analysis, the proposed estimator can be more efficient when the missing data are missing completely at random and can correct bias when the missing data are missing at random. The potential application of the proposed method to the generalized probit model with missing continuous covariates is also outlined.  相似文献   

4.
This paper presents an extension of mean-squared forecast error (MSFE) model averaging for integrating linear regression models computed on data frames of various lengths. Proposed method is considered to be a preferable alternative to best model selection by various efficiency criteria such as Bayesian information criterion (BIC), Akaike information criterion (AIC), F-statistics and mean-squared error (MSE) as well as to Bayesian model averaging (BMA) and naïve simple forecast average. The method is developed to deal with possibly non-nested models having different number of observations and selects forecast weights by minimizing the unbiased estimator of MSFE. Proposed method also yields forecast confidence intervals with a given significance level what is not possible when applying other model averaging methods. In addition, out-of-sample simulation and empirical testing proves efficiency of such kind of averaging when forecasting economic processes.  相似文献   

5.
Many credit risk models are based on the selection of a single logistic regression model, on which to base parameter estimation. When many competing models are available, and without enough guidance from economical theory, model averaging represents an appealing alternative to the selection of single models. Despite model averaging approaches have been present in statistics for many years, only recently they are starting to receive attention in economics and finance applications. This contribution shows how Bayesian model averaging can be applied to credit risk estimation, a research area that has received a great deal of attention recently, especially in the light of the global financial crisis of the last few years and the correlated attempts to regulate international finance. The paper considers the use of logistic regression models under the Bayesian Model Averaging paradigm. We argue that Bayesian model averaging is not only more correct from a theoretical viewpoint, but also slightly superior, in terms of predictive performance, with respect to single selected models.  相似文献   

6.
This paper is concerned with model averaging procedure for varying-coefficient partially linear models with missing responses. The profile least-squares estimation process and inverse probability weighted method are employed to estimate regression coefficients of the partially restricted models, in which the propensity score is estimated by the covariate balancing propensity score method. The estimators of the linear parameters are shown to be asymptotically normal. Then we develop the focused information criterion, formulate the frequentist model averaging estimators and construct the corresponding confidence intervals. Some simulation studies are conducted to examine the finite sample performance of the proposed methods. We find that the covariate balancing propensity score improves the performance of the inverse probability weighted estimator. We also demonstrate the superiority of the proposed model averaging estimators over those of existing strategies in terms of mean squared error and coverage probability. Finally, our approach is further applied to a real data example.  相似文献   

7.
In this paper, we investigate model selection and model averaging based on rank regression. Under mild conditions, we propose a focused information criterion and a frequentist model averaging estimator for the focused parameters in rank regression model. Compared to the least squares method, the new method is not only highly efficient but also robust. The large sample properties of the proposed procedure are established. The finite sample properties are investigated via extensive Monte Claro simulation study. Finally, we use the Boston Housing Price Dataset to illustrate the use of the proposed rank methods.  相似文献   

8.
We study the focused information criterion and frequentist model averaging and their application to post‐model‐selection inference for weighted composite quantile regression (WCQR) in the context of the additive partial linear models. With the non‐parametric functions approximated by polynomial splines, we show that, under certain conditions, the asymptotic distribution of the frequentist model averaging WCQR‐estimator of a focused parameter is a non‐linear mixture of normal distributions. This asymptotic distribution is used to construct confidence intervals that achieve the nominal coverage probability. With properly chosen weights, the focused information criterion based WCQR estimators are not only robust to outliers and non‐normal residuals but also can achieve efficiency close to the maximum likelihood estimator, without assuming the true error distribution. Simulation studies and a real data analysis are used to illustrate the effectiveness of the proposed procedure.  相似文献   

9.
A general class of multivariate regression models is considered for repeated measurements with discrete and continuous outcome variables. The proposed model is based on the seemingly unrelated regression model (Zellner, 1962) and an extension of the model of Park and Woolson(1992). The regression parameters of the model are consistently estimated using the two-stage least squares method. When the out come variables are multivariate normal, the two-stage estimator reduces to Zellner’s two-stage estimator. As a special case, we consider the marginal distribution described by Liang and Zeger (1986). Under this this distributional assumption, we show that the two-stage estimator has similar asymptotic properties and comparable small sample properties to Liang and Zeger's estimator. Since the proposed approach is based on the least squares method, however, any distributional assumption is not required for variables outcome variables. As a result, the proposed estimator is more robust to the marginal distribution of outcomes.  相似文献   

10.
This paper considers model averaging for the ordered probit and nested logit models, which are widely used in empirical research. Within the frameworks of these models, we examine a range of model averaging methods, including the jackknife method, which is proved to have an optimal asymptotic property in this paper. We conduct a large-scale simulation study to examine the behaviour of these model averaging estimators in finite samples, and draw comparisons with model selection estimators. Our results show that while neither averaging nor selection is a consistently better strategy, model selection results in the poorest estimates far more frequently than averaging, and more often than not, averaging yields superior estimates. Among the averaging methods considered, the one based on a smoothed version of the Bayesian Information criterion frequently produces the most accurate estimates. In three real data applications, we demonstrate the usefulness of model averaging in mitigating problems associated with the ‘replication crisis’ that commonly arises with model selection.  相似文献   

11.
Compositional data are known as a sort of complex multidimensional data with the feature that reflect the relative information rather than absolute information. There are a variety of models for regression analysis with compositional variables. Similar to the traditional regression analysis, the heteroskedasticity still exists in these models. However, the existing heteroskedastic regression analysis methods cannot apply in these models with compositional error term. In this paper, we mainly study the heteroskedastic linear regression model with compositional response and covariates. The parameter estimator is obtained through weighted least squares method. For the hypothesis test of parameter, the test statistic is based on the original least squares estimator and corresponding heteroskedasticity-consistent covariance matrix estimator. When the proposed method is applied to both simulation and real example, we use the original least squares method as a comparison during the whole process. The results implicate the model's practicality and effectiveness in regression analysis with heteroskedasticity.  相似文献   

12.
Bootstrap smoothed (bagged) parameter estimators have been proposed as an improvement on estimators found after preliminary data‐based model selection. A result of Efron in 2014 is a very convenient and widely applicable formula for a delta method approximation to the standard deviation of the bootstrap smoothed estimator. This approximation provides an easily computed guide to the accuracy of this estimator. In addition, Efron considered a confidence interval centred on the bootstrap smoothed estimator, with width proportional to the estimate of this approximation to the standard deviation. We evaluate this confidence interval in the scenario of two nested linear regression models, the full model and a simpler model, and a preliminary test of the null hypothesis that the simpler model is correct. We derive computationally convenient expressions for the ideal bootstrap smoothed estimator and the coverage probability and expected length of this confidence interval. In terms of coverage probability, this confidence interval outperforms the post‐model‐selection confidence interval with the same nominal coverage and based on the same preliminary test. We also compare the performance of the confidence interval centred on the bootstrap smoothed estimator, in terms of expected length, to the usual confidence interval, with the same minimum coverage probability, based on the full model.  相似文献   

13.
Rong Zhu  Xinyu Zhang 《Statistics》2018,52(1):205-227
The theories and applications of model averaging have been developed comprehensively in the past two decades. In this paper, we consider model averaging for multivariate multiple regression models. In order to make use of the correlation information of the dependent variables sufficiently, we propose a model averaging method based on Mahalanobis distance which is related to the correlation of the dependent variables. We prove the asymptotic optimality of the resulting Mahalanobis Mallows model averaging (MMMA) estimators under certain assumptions. In the simulation study, we show that the proposed MMMA estimators compare favourably with model averaging estimators based on AIC and BIC weights and the Mallows model averaging estimators from the single dependent variable regression models. We further apply our method to the real data on urbanization rate and the proportion of non-agricultural population in ethnic minority areas of China.  相似文献   

14.
When constructing models to summarize clinical data to be used for simulations, it is good practice to evaluate the models for their capacity to reproduce the data. This can be done by means of Visual Predictive Checks (VPC), which consist of several reproductions of the original study by simulation from the model under evaluation, calculating estimates of interest for each simulated study and comparing the distribution of those estimates with the estimate from the original study. This procedure is a generic method that is straightforward to apply, in general. Here we consider the application of the method to time-to-event data and consider the special case when a time-varying covariate is not known or cannot be approximated after event time. In this case, simulations cannot be conducted beyond the end of the follow-up time (event or censoring time) in the original study. Thus, the simulations must be censored at the end of the follow-up time. Since this censoring is not random, the standard KM estimates from the simulated studies and the resulting VPC will be biased. We propose to use inverse probability of censoring weighting (IPoC) method to correct the KM estimator for the simulated studies and obtain unbiased VPCs. For analyzing the Cantos study, the IPoC weighting as described here proved valuable and enabled the generation of VPCs to qualify PKPD models for simulations. Here, we use a generated data set, which allows illustration of the different situations and evaluation against the known truth.  相似文献   

15.
This paper is concerned with model selection and model averaging procedures for partially linear single-index models. The profile least squares procedure is employed to estimate regression coefficients for the full model and submodels. We show that the estimators for submodels are asymptotically normal. Based on the asymptotic distribution of the estimators, we derive the focused information criterion (FIC), formulate the frequentist model average (FMA) estimators and construct proper confidence intervals for FMA estimators and FIC estimator, a special case of FMA estimators. Monte Carlo studies are performed to demonstrate the superiority of the proposed method over the full model, and over models chosen by AIC or BIC in terms of coverage probability and mean squared error. Our approach is further applied to real data from a male fertility study to explore potential factors related to sperm concentration and estimate the relationship between sperm concentration and monobutyl phthalate.  相似文献   

16.
When variable selection with stepwise regression and model fitting are conducted on the same data set, competition for inclusion in the model induces a selection bias in coefficient estimators away from zero. In proportional hazards regression with right-censored data, selection bias inflates the absolute value of parameter estimate of selected parameters, while the omission of other variables may shrink coefficients toward zero. This paper explores the extent of the bias in parameter estimates from stepwise proportional hazards regression and proposes a bootstrap method, similar to those proposed by Miller (Subset Selection in Regression, 2nd edn. Chapman & Hall/CRC, 2002) for linear regression, to correct for selection bias. We also use bootstrap methods to estimate the standard error of the adjusted estimators. Simulation results show that substantial biases could be present in uncorrected stepwise estimators and, for binary covariates, could exceed 250% of the true parameter value. The simulations also show that the conditional mean of the proposed bootstrap bias-corrected parameter estimator, given that a variable is selected, is moved closer to the unconditional mean of the standard partial likelihood estimator in the chosen model, and to the population value of the parameter. We also explore the effect of the adjustment on estimates of log relative risk, given the values of the covariates in a selected model. The proposed method is illustrated with data sets in primary biliary cirrhosis and in multiple myeloma from the Eastern Cooperative Oncology Group.  相似文献   

17.
We propose a new iterative algorithm, called model walking algorithm, to the Bayesian model averaging method on the longitudinal regression models with AR(1) random errors within subjects. The Markov chain Monte Carlo method together with the model walking algorithm are employed. The proposed method is successfully applied to predict the progression rates on a myopia intervention trial in children.  相似文献   

18.
We study the problem of selecting a regularization parameter in penalized Gaussian graphical models. When the goal is to obtain a model with good predictive power, cross-validation is the gold standard. We present a new estimator of Kullback–Leibler loss in Gaussian Graphical models which provides a computationally fast alternative to cross-validation. The estimator is obtained by approximating leave-one-out-cross-validation. Our approach is demonstrated on simulated data sets for various types of graphs. The proposed formula exhibits superior performance, especially in the typical small sample size scenario, compared to other available alternatives to cross-validation, such as Akaike's information criterion and Generalized approximate cross-validation. We also show that the estimator can be used to improve the performance of the Bayesian information criterion when the sample size is small.  相似文献   

19.
M-estimation is a widely used technique for robust statistical inference. In this paper, we study model selection and model averaging for M-estimation to simultaneously improve the coverage probability of confidence intervals of the parameters of interest and reduce the impact of heavy-tailed errors or outliers in the response. Under general conditions, we develop robust versions of the focused information criterion and a frequentist model average estimator for M-estimation, and we examine their theoretical properties. In addition, we carry out extensive simulation studies as well as two real examples to assess the performance of our new procedure, and find that the proposed method produces satisfactory results.  相似文献   

20.
A nonparametric method based on the empirical likelihood is proposed to detect the change-point in the coefficient of linear regression models. The empirical likelihood ratio test statistic is proved to have the same asymptotic null distribution as that with classical parametric likelihood. Under some mild conditions, the maximum empirical likelihood change-point estimator is also shown to be consistent. The simulation results show the sensitivity and robustness of the proposed approach. The method is applied to some real datasets to illustrate the effectiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号