首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
This paper establishes that instruments enable the identification of nonparametric regression models in the presence of measurement error by providing a closed form solution for the regression function in terms of Fourier transforms of conditional expectations of observable variables. For parametrically specified regression functions, we propose a root n consistent and asymptotically normal estimator that takes the familiar form of a generalized method of moments estimator with a plugged‐in nonparametric kernel density estimate. Both the identification and the estimation methodologies rely on Fourier analysis and on the theory of generalized functions. The finite‐sample properties of the estimator are investigated through Monte Carlo simulations.  相似文献   

2.
The focus of this paper is the nonparametric estimation of an instrumental regression function ϕ defined by conditional moment restrictions that stem from a structural econometric model E[Yϕ(Z)|W]=0, and involve endogenous variables Y and Z and instruments W. The function ϕ is the solution of an ill‐posed inverse problem and we propose an estimation procedure based on Tikhonov regularization. The paper analyzes identification and overidentification of this model, and presents asymptotic properties of the estimated nonparametric instrumental regression function.  相似文献   

3.
In parametric, nonlinear structural models, a classical sufficient condition for local identification, like Fisher (1966) and Rothenberg (1971), is that the vector of moment conditions is differentiable at the true parameter with full rank derivative matrix. We derive an analogous result for the nonparametric, nonlinear structural models, establishing conditions under which an infinite dimensional analog of the full rank condition is sufficient for local identification. Importantly, we show that additional conditions are often needed in nonlinear, nonparametric models to avoid nonlinearities overwhelming linear effects. We give restrictions on a neighborhood of the true value that are sufficient for local identification. We apply these results to obtain new, primitive identification conditions in several important models, including nonseparable quantile instrumental variable (IV) models and semiparametric consumption‐based asset pricing models.  相似文献   

4.
This paper studies a shape‐invariant Engel curve system with endogenous total expenditure, in which the shape‐invariant specification involves a common shift parameter for each demographic group in a pooled system of nonparametric Engel curves. We focus on the identification and estimation of both the nonparametric shapes of the Engel curves and the parametric specification of the demographic scaling parameters. The identification condition relates to the bounded completeness and the estimation procedure applies the sieve minimum distance estimation of conditional moment restrictions, allowing for endogeneity. We establish a new root mean squared convergence rate for the nonparametric instrumental variable regression when the endogenous regressor could have unbounded support. Root‐n asymptotic normality and semiparametric efficiency of the parametric components are also given under a set of “low‐level” sufficient conditions. Our empirical application using the U.K. Family Expenditure Survey shows the importance of adjusting for endogeneity in terms of both the nonparametric curvatures and the demographic parameters of systems of Engel curves.  相似文献   

5.
This paper studies nonparametric estimation of conditional moment restrictions in which the generalized residual functions can be nonsmooth in the unknown functions of endogenous variables. This is a nonparametric nonlinear instrumental variables (IV) problem. We propose a class of penalized sieve minimum distance (PSMD) estimators, which are minimizers of a penalized empirical minimum distance criterion over a collection of sieve spaces that are dense in the infinite‐dimensional function parameter space. Some of the PSMD procedures use slowly growing finite‐dimensional sieves with flexible penalties or without any penalty; others use large dimensional sieves with lower semicompact and/or convex penalties. We establish their consistency and the convergence rates in Banach space norms (such as a sup‐norm or a root mean squared norm), allowing for possibly noncompact infinite‐dimensional parameter spaces. For both mildly and severely ill‐posed nonlinear inverse problems, our convergence rates in Hilbert space norms (such as a root mean squared norm) achieve the known minimax optimal rate for the nonparametric mean IV regression. We illustrate the theory with a nonparametric additive quantile IV regression. We present a simulation study and an empirical application of estimating nonparametric quantile IV Engel curves.  相似文献   

6.
We develop results for the use of Lasso and post‐Lasso methods to form first‐stage predictions and estimate optimal instruments in linear instrumental variables (IV) models with many instruments, p. Our results apply even when p is much larger than the sample size, n. We show that the IV estimator based on using Lasso or post‐Lasso in the first stage is root‐n consistent and asymptotically normal when the first stage is approximately sparse, that is, when the conditional expectation of the endogenous variables given the instruments can be well‐approximated by a relatively small set of variables whose identities may be unknown. We also show that the estimator is semiparametrically efficient when the structural error is homoscedastic. Notably, our results allow for imperfect model selection, and do not rely upon the unrealistic “beta‐min” conditions that are widely used to establish validity of inference following model selection (see also Belloni, Chernozhukov, and Hansen (2011b)). In simulation experiments, the Lasso‐based IV estimator with a data‐driven penalty performs well compared to recently advocated many‐instrument robust procedures. In an empirical example dealing with the effect of judicial eminent domain decisions on economic outcomes, the Lasso‐based IV estimator outperforms an intuitive benchmark. Optimal instruments are conditional expectations. In developing the IV results, we establish a series of new results for Lasso and post‐Lasso estimators of nonparametric conditional expectation functions which are of independent theoretical and practical interest. We construct a modification of Lasso designed to deal with non‐Gaussian, heteroscedastic disturbances that uses a data‐weighted 1‐penalty function. By innovatively using moderate deviation theory for self‐normalized sums, we provide convergence rates for the resulting Lasso and post‐Lasso estimators that are as sharp as the corresponding rates in the homoscedastic Gaussian case under the condition that logp = o(n1/3). We also provide a data‐driven method for choosing the penalty level that must be specified in obtaining Lasso and post‐Lasso estimates and establish its asymptotic validity under non‐Gaussian, heteroscedastic disturbances.  相似文献   

7.
This paper considers identification and estimation of the effect of a mismeasured binary regressor in a nonparametric or semiparametric regression, or the conditional average effect of a binary treatment or policy on some outcome where treatment may be misclassified. Failure to account for misclassification is shown to result in attenuation bias in the estimated treatment effect. An identifying assumption that overcomes this bias is the existence of an instrument for the binary regressor that is conditionally independent of the treatment effect. A discrete instrument suffices for nonparametric identification.  相似文献   

8.
We consider nonparametric identification and estimation in a nonseparable model where a continuous regressor of interest is a known, deterministic, but kinked function of an observed assignment variable. We characterize a broad class of models in which a sharp “Regression Kink Design” (RKD or RK Design) identifies a readily interpretable treatment‐on‐the‐treated parameter (Florens, Heckman, Meghir, and Vytlacil (2008)). We also introduce a “fuzzy regression kink design” generalization that allows for omitted variables in the assignment rule, noncompliance, and certain types of measurement errors in the observed values of the assignment variable and the policy variable. Our identifying assumptions give rise to testable restrictions on the distributions of the assignment variable and predetermined covariates around the kink point, similar to the restrictions delivered by Lee (2008) for the regression discontinuity design. Using a kink in the unemployment benefit formula, we apply a fuzzy RKD to empirically estimate the effect of benefit rates on unemployment durations in Austria.  相似文献   

9.
We consider nonparametric estimation of a regression function that is identified by requiring a specified quantile of the regression “error” conditional on an instrumental variable to be zero. The resulting estimating equation is a nonlinear integral equation of the first kind, which generates an ill‐posed inverse problem. The integral operator and distribution of the instrumental variable are unknown and must be estimated nonparametrically. We show that the estimator is mean‐square consistent, derive its rate of convergence in probability, and give conditions under which this rate is optimal in a minimax sense. The results of Monte Carlo experiments show that the estimator behaves well in finite samples.  相似文献   

10.
I consider nonparametric identification of nonseparable instrumental variables models with continuous endogenous variables. If both the outcome and first stage equations are strictly increasing in a scalar unobservable, then many kinds of continuous, discrete, and even binary instruments can be used to point‐identify the levels of the outcome equation. This contrasts sharply with related work by Imbens and Newey, 2009 that requires continuous instruments with large support. One implication is that assumptions about the dimension of heterogeneity can provide nonparametric point‐identification of the distribution of treatment response for a continuous treatment in a randomized controlled experiment with partial compliance.  相似文献   

11.
We present new identification results for nonparametric models of differentiated products markets, using only market level observables. We specify a nonparametric random utility discrete choice model of demand allowing rich preference heterogeneity, product/market unobservables, and endogenous prices. Our supply model posits nonparametric cost functions, allows latent cost shocks, and nests a range of standard oligopoly models. We consider identification of demand, identification of changes in aggregate consumer welfare, identification of marginal costs, identification of firms' marginal cost functions, and discrimination between alternative models of firm conduct. We explore two complementary approaches. The first demonstrates identification under the same nonparametric instrumental variables conditions required for identification of regression models. The second treats demand and supply in a system of nonparametric simultaneous equations, leading to constructive proofs exploiting exogenous variation in demand shifters and cost shifters. We also derive testable restrictions that provide the first general formalization of Bresnahan's (1982) intuition for empirically distinguishing between alternative models of oligopoly competition. From a practical perspective, our results clarify the types of instrumental variables needed with market level data, including tradeoffs between functional form and exclusion restrictions.  相似文献   

12.
This paper is concerned with inference about a function g that is identified by a conditional moment restriction involving instrumental variables. The paper presents a test of the hypothesis that g belongs to a finite‐dimensional parametric family against a nonparametric alternative. The test does not require nonparametric estimation of g and is not subject to the ill‐posed inverse problem of nonparametric instrumental variables estimation. Under mild conditions, the test is consistent against any alternative model. In large samples, its power is arbitrarily close to 1 uniformly over a class of alternatives whose distance from the null hypothesis is O(n−1/2), where n is the sample size. In Monte Carlo simulations, the finite‐sample power of the new test exceeds that of existing tests.  相似文献   

13.
This paper considers inference on functionals of semi/nonparametric conditional moment restrictions with possibly nonsmooth generalized residuals, which include all of the (nonlinear) nonparametric instrumental variables (IV) as special cases. These models are often ill‐posed and hence it is difficult to verify whether a (possibly nonlinear) functional is root‐n estimable or not. We provide computationally simple, unified inference procedures that are asymptotically valid regardless of whether a functional is root‐n estimable or not. We establish the following new useful results: (1) the asymptotic normality of a plug‐in penalized sieve minimum distance (PSMD) estimator of a (possibly nonlinear) functional; (2) the consistency of simple sieve variance estimators for the plug‐in PSMD estimator, and hence the asymptotic chi‐square distribution of the sieve Wald statistic; (3) the asymptotic chi‐square distribution of an optimally weighted sieve quasi likelihood ratio (QLR) test under the null hypothesis; (4) the asymptotic tight distribution of a non‐optimally weighted sieve QLR statistic under the null; (5) the consistency of generalized residual bootstrap sieve Wald and QLR tests; (6) local power properties of sieve Wald and QLR tests and of their bootstrap versions; (7) asymptotic properties of sieve Wald and SQLR for functionals of increasing dimension. Simulation studies and an empirical illustration of a nonparametric quantile IV regression are presented.  相似文献   

14.
This note revisits the identification theorems of Brown (1983) and Roehrig (1988). We describe an error in the proofs of the main identification theorems in these papers, and provide an important counterexample to the theorems on the identification of the reduced form. Specifically, the reduced form of a nonseparable simultaneous equations model is not identified even under the assumptions of these papers. We provide conditions under which the reduced form is identified and is recoverable using the distribution of the endogenous variables conditional on the exogenous variables. However, these conditions place substantial limitations on the structural model. We conclude the note with a conjecture that it may be possible to use classical exclusion restrictions to recover some of the key implications of the theorems in more general settings.  相似文献   

15.
Nonparametric estimation of a structural cointegrating regression model is studied. As in the standard linear cointegrating regression model, the regressor and the dependent variable are jointly dependent and contemporaneously correlated. In nonparametric estimation problems, joint dependence is known to be a major complication that affects identification, induces bias in conventional kernel estimates, and frequently leads to ill‐posed inverse problems. In functional cointegrating regressions where the regressor is an integrated or near‐integrated time series, it is shown here that inverse and ill‐posed inverse problems do not arise. Instead, simple nonparametric kernel estimation of a structural nonparametric cointegrating regression is consistent and the limit distribution theory is mixed normal, giving straightforward asymptotics that are useable in practical work. It is further shown that use of augmented regression, as is common in linear cointegration modeling to address endogeneity, does not lead to bias reduction in nonparametric regression, but there is an asymptotic gain in variance reduction. The results provide a convenient basis for inference in structural nonparametric regression with nonstationary time series when there is a single integrated or near‐integrated regressor. The methods may be applied to a range of empirical models where functional estimation of cointegrating relations is required.  相似文献   

16.
We consider empirical measurement of equivalent variation (EV) and compensating variation (CV) resulting from price change of a discrete good using individual‐level data when there is unobserved heterogeneity in preferences. We show that for binary and unordered multinomial choice, the marginal distributions of EV and CV can be expressed as simple closed‐form functionals of conditional choice probabilities under essentially unrestricted preference distributions. These results hold even when the distribution and dimension of unobserved heterogeneity are neither known nor identified, and utilities are neither quasilinear nor parametrically specified. The welfare distributions take simple forms that are easy to compute in applications. In particular, average EV for a price rise equals the change in average Marshallian consumer surplus and is smaller than average CV for a normal good. These nonparametric point‐identification results fail for ordered choice if the unit price is identical for all alternatives, thereby providing a connection to Hausman–Newey's (2014) partial identification results for the limiting case of continuous choice.  相似文献   

17.
This paper provides weak conditions under which there is nonparametric interval identification of local features of a structural function that depends on a discrete endogenous variable and is nonseparable in latent variates. The function delivers values of a discrete or continuous outcome and instruments may be discrete valued. Application of the analog principle leads to quantile regression based interval estimators of values and partial differences of structural functions. The results are used to investigate the nonparametric identifying power of the quarter‐of‐birth instruments used in Angrist and Krueger's 1991 study of the returns to schooling.  相似文献   

18.
We introduce the class of conditional linear combination tests, which reject null hypotheses concerning model parameters when a data‐dependent convex combination of two identification‐robust statistics is large. These tests control size under weak identification and have a number of optimality properties in a conditional problem. We show that the conditional likelihood ratio test of Moreira, 2003 is a conditional linear combination test in models with one endogenous regressor, and that the class of conditional linear combination tests is equivalent to a class of quasi‐conditional likelihood ratio tests. We suggest using minimax regret conditional linear combination tests and propose a computationally tractable class of tests that plug in an estimator for a nuisance parameter. These plug‐in tests perform well in simulation and have optimal power in many strongly identified models, thus allowing powerful identification‐robust inference in a wide range of linear and nonlinear models without sacrificing efficiency if identification is strong.  相似文献   

19.
Nonseparable panel models are important in a variety of economic settings, including discrete choice. This paper gives identification and estimation results for nonseparable models under time‐homogeneity conditions that are like “time is randomly assigned” or “time is an instrument.” Partial‐identification results for average and quantile effects are given for discrete regressors, under static or dynamic conditions, in fully nonparametric and in semiparametric models, with time effects. It is shown that the usual, linear, fixed‐effects estimator is not a consistent estimator of the identified average effect, and a consistent estimator is given. A simple estimator of identified quantile treatment effects is given, providing a solution to the important problem of estimating quantile treatment effects from panel data. Bounds for overall effects in static and dynamic models are given. The dynamic bounds provide a partial‐identification solution to the important problem of estimating the effect of state dependence in the presence of unobserved heterogeneity. The impact of T, the number of time periods, is shown by deriving shrinkage rates for the identified set as T grows. We also consider semiparametric, discrete‐choice models and find that semiparametric panel bounds can be much tighter than nonparametric bounds. Computationally convenient methods for semiparametric models are presented. We propose a novel inference method that applies in panel data and other settings and show that it produces uniformly valid confidence regions in large samples. We give empirical illustrations.  相似文献   

20.
We introduce methods for estimating nonparametric, nonadditive models with simultaneity. The methods are developed by directly connecting the elements of the structural system to be estimated with features of the density of the observable variables, such as ratios of derivatives or averages of products of derivatives of this density. The estimators are therefore easily computed functionals of a nonparametric estimator of the density of the observable variables. We consider in detail a model where to each structural equation there corresponds an exclusive regressor and a model with one equation of interest and one instrument that is included in a second equation. For both models, we provide new characterizations of observational equivalence on a set, in terms of the density of the observable variables and derivatives of the structural functions. Based on those characterizations, we develop two estimation methods. In the first method, the estimators of the structural derivatives are calculated by a simple matrix inversion and matrix multiplication, analogous to a standard least squares estimator, but with the elements of the matrices being averages of products of derivatives of nonparametric density estimators. In the second method, the estimators of the structural derivatives are calculated in two steps. In a first step, values of the instrument are found at which the density of the observable variables satisfies some properties. In the second step, the estimators are calculated directly from the values of derivatives of the density of the observable variables evaluated at the found values of the instrument. We show that both pointwise estimators are consistent and asymptotically normal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号