首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper analyzes the conditions under which consistent estimation can be achieved in instrumental variables (IV) regression when the available instruments are weak and the number of instruments, Kn, goes to infinity with the sample size. We show that consistent estimation depends importantly on the strength of the instruments as measured by rn, the rate of growth of the so‐called concentration parameter, and also on Kn. In particular, when Kn→∞, the concentration parameter can grow, even if each individual instrument is only weakly correlated with the endogenous explanatory variables, and consistency of certain estimators can be established under weaker conditions than have previously been assumed in the literature. Hence, the use of many weak instruments may actually improve the performance of certain point estimators. More specifically, we find that the limited information maximum likelihood (LIML) estimator and the bias‐corrected two‐stage least squares (B2SLS) estimator are consistent when , while the two‐stage least squares (2SLS) estimator is consistent only if Kn/rn→0 as n→∞. These consistency results suggest that LIML and B2SLS are more robust to instrument weakness than 2SLS.  相似文献   

2.
Matching estimators for average treatment effects are widely used in evaluation research despite the fact that their large sample properties have not been established in many cases. The absence of formal results in this area may be partly due to the fact that standard asymptotic expansions do not apply to matching estimators with a fixed number of matches because such estimators are highly nonsmooth functionals of the data. In this article we develop new methods for analyzing the large sample properties of matching estimators and establish a number of new results. We focus on matching with replacement with a fixed number of matches. First, we show that matching estimators are not N1/2‐consistent in general and describe conditions under which matching estimators do attain N1/2‐consistency. Second, we show that even in settings where matching estimators are N1/2‐consistent, simple matching estimators with a fixed number of matches do not attain the semiparametric efficiency bound. Third, we provide a consistent estimator for the large sample variance that does not require consistent nonparametric estimation of unknown functions. Software for implementing these methods is available in Matlab, Stata, and R.  相似文献   

3.
Fixed effects estimators of panel models can be severely biased because of the well‐known incidental parameters problem. We show that this bias can be reduced by using a panel jackknife or an analytical bias correction motivated by large T. We give bias corrections for averages over the fixed effects, as well as model parameters. We find large bias reductions from using these approaches in examples. We consider asymptotics where T grows with n, as an approximation to the properties of the estimators in econometric applications. We show that if T grows at the same rate as n, the fixed effects estimator is asymptotically biased, so that asymptotic confidence intervals are incorrect, but that they are correct for the panel jackknife. We show T growing faster than n1/3 suffices for correctness of the analytic correction, a property we also conjecture for the jackknife.  相似文献   

4.
This paper proposes a new nested algorithm (NPL) for the estimation of a class of discrete Markov decision models and studies its statistical and computational properties. Our method is based on a representation of the solution of the dynamic programming problem in the space of conditional choice probabilities. When the NPL algorithm is initialized with consistent nonparametric estimates of conditional choice probabilities, successive iterations return a sequence of estimators of the structural parameters which we call K–stage policy iteration estimators. We show that the sequence includes as extreme cases a Hotz–Miller estimator (for K=1) and Rust's nested fixed point estimator (in the limit when K→∞). Furthermore, the asymptotic distribution of all the estimators in the sequence is the same and equal to that of the maximum likelihood estimator. We illustrate the performance of our method with several examples based on Rust's bus replacement model. Monte Carlo experiments reveal a trade–off between finite sample precision and computational cost in the sequence of policy iteration estimators.  相似文献   

5.
This paper develops the fixed‐smoothing asymptotics in a two‐step generalized method of moments (GMM) framework. Under this type of asymptotics, the weighting matrix in the second‐step GMM criterion function converges weakly to a random matrix and the two‐step GMM estimator is asymptotically mixed normal. Nevertheless, the Wald statistic, the GMM criterion function statistic, and the Lagrange multiplier statistic remain asymptotically pivotal. It is shown that critical values from the fixed‐smoothing asymptotic distribution are high order correct under the conventional increasing‐smoothing asymptotics. When an orthonormal series covariance estimator is used, the critical values can be approximated very well by the quantiles of a noncentral F distribution. A simulation study shows that statistical tests based on the new fixed‐smoothing approximation are much more accurate in size than existing tests.  相似文献   

6.
The conventional heteroskedasticity‐robust (HR) variance matrix estimator for cross‐sectional regression (with or without a degrees‐of‐freedom adjustment), applied to the fixed‐effects estimator for panel data with serially uncorrelated errors, is inconsistent if the number of time periods T is fixed (and greater than 2) as the number of entities n increases. We provide a bias‐adjusted HR estimator that is ‐consistent under any sequences (n, T) in which n and/or T increase to ∞. This estimator can be extended to handle serial correlation of fixed order.  相似文献   

7.
In this paper we propose a new estimator for a model with one endogenous regressor and many instrumental variables. Our motivation comes from the recent literature on the poor properties of standard instrumental variables estimators when the instrumental variables are weakly correlated with the endogenous regressor. Our proposed estimator puts a random coefficients structure on the relation between the endogenous regressor and the instruments. The variance of the random coefficients is modelled as an unknown parameter. In addition to proposing a new estimator, our analysis yields new insights into the properties of the standard two‐stage least squares (TSLS) and limited‐information maximum likelihood (LIML) estimators in the case with many weak instruments. We show that in some interesting cases, TSLS and LIML can be approximated by maximizing the random effects likelihood subject to particular constraints. We show that statistics based on comparisons of the unconstrained estimates of these parameters to the implicit TSLS and LIML restrictions can be used to identify settings when standard large sample approximations to the distributions of TSLS and LIML are likely to perform poorly. We also show that with many weak instruments, LIML confidence intervals are likely to have under‐coverage, even though its finite sample distribution is approximately centered at the true value of the parameter. In an application with real data and simulations around this data set, the proposed estimator performs markedly better than TSLS and LIML, both in terms of coverage rate and in terms of risk.  相似文献   

8.
Matching estimators are widely used in empirical economics for the evaluation of programs or treatments. Researchers using matching methods often apply the bootstrap to calculate the standard errors. However, no formal justification has been provided for the use of the bootstrap in this setting. In this article, we show that the standard bootstrap is, in general, not valid for matching estimators, even in the simple case with a single continuous covariate where the estimator is root‐N consistent and asymptotically normally distributed with zero asymptotic bias. Valid inferential methods in this setting are the analytic asymptotic variance estimator of Abadie and Imbens (2006a) as well as certain modifications of the standard bootstrap, like the subsampling methods in Politis and Romano (1994).  相似文献   

9.
We develop a new specification test for IV estimators adopting a particular second order approximation of Bekker. The new specification test compares the difference of the forward (conventional) 2SLS estimator of the coefficient of the right‐hand side endogenous variable with the reverse 2SLS estimator of the same unknown parameter when the normalization is changed. Under the null hypothesis that conventional first order asymptotics provide a reliable guide to inference, the two estimates should be very similar. Our test sees whether the resulting difference in the two estimates satisfies the results of second order asymptotic theory. Essentially the same idea is applied to develop another new specification test using second‐order unbiased estimators of the type first proposed by Nagar. If the forward and reverse Nagar‐type estimators are not significantly different we recommend estimation by LIML, which we demonstrate is the optimal linear combination of the Nagar‐type estimators (to second order). We also demonstrate the high degree of similarity for k‐class estimators between the approach of Bekker and the Edgeworth expansion approach of Rothenberg. An empirical example and Monte Carlo evidence demonstrate the operation of the new specification test.  相似文献   

10.
This paper presents a new approach to estimation and inference in panel data models with a general multifactor error structure. The unobserved factors and the individual‐specific errors are allowed to follow arbitrary stationary processes, and the number of unobserved factors need not be estimated. The basic idea is to filter the individual‐specific regressors by means of cross‐section averages such that asymptotically as the cross‐section dimension (N) tends to infinity, the differential effects of unobserved common factors are eliminated. The estimation procedure has the advantage that it can be computed by least squares applied to auxiliary regressions where the observed regressors are augmented with cross‐sectional averages of the dependent variable and the individual‐specific regressors. A number of estimators (referred to as common correlated effects (CCE) estimators) are proposed and their asymptotic distributions are derived. The small sample properties of mean group and pooled CCE estimators are investigated by Monte Carlo experiments, showing that the CCE estimators have satisfactory small sample properties even under a substantial degree of heterogeneity and dynamics, and for relatively small values of N and T.  相似文献   

11.
I introduce a model of undirected dyadic link formation which allows for assortative matching on observed agent characteristics (homophily) as well as unrestricted agent‐level heterogeneity in link surplus (degree heterogeneity). Like in fixed effects panel data analyses, the joint distribution of observed and unobserved agent‐level characteristics is left unrestricted. Two estimators for the (common) homophily parameter, β0, are developed and their properties studied under an asymptotic sequence involving a single network growing large. The first, tetrad logit (TL), estimator conditions on a sufficient statistic for the degree heterogeneity. The second, joint maximum likelihood (JML), estimator treats the degree heterogeneity {Ai0}i = 1N as additional (incidental) parameters to be estimated. The TL estimate is consistent under both sparse and dense graph sequences, whereas consistency of the JML estimate is shown only under dense graph sequences.  相似文献   

12.
Many approaches to estimation of panel models are based on an average or integrated likelihood that assigns weights to different values of the individual effects. Fixed effects, random effects, and Bayesian approaches all fall into this category. We provide a characterization of the class of weights (or priors) that produce estimators that are first‐order unbiased. We show that such bias‐reducing weights will depend on the data in general unless an orthogonal reparameterization or an essentially equivalent condition is available. Two intuitively appealing weighting schemes are discussed. We argue that asymptotically valid confidence intervals can be read from the posterior distribution of the common parameters when N and T grow at the same rate. Next, we show that random effects estimators are not bias reducing in general and we discuss important exceptions. Moreover, the bias depends on the Kullback–Leibler distance between the population distribution of the effects and its best approximation in the random effects family. Finally, we show that, in general, standard random effects estimation of marginal effects is inconsistent for large T, whereas the posterior mean of the marginal effect is large‐T consistent, and we provide conditions for bias reduction. Some examples and Monte Carlo experiments illustrate the results.  相似文献   

13.
This paper provides a first order asymptotic theory for generalized method of moments (GMM) estimators when the number of moment conditions is allowed to increase with the sample size and the moment conditions may be weak. Examples in which these asymptotics are relevant include instrumental variable (IV) estimation with many (possibly weak or uninformed) instruments and some panel data models that cover moderate time spans and have correspondingly large numbers of instruments. Under certain regularity conditions, the GMM estimators are shown to converge in probability but not necessarily to the true parameter, and conditions for consistent GMM estimation are given. A general framework for the GMM limit distribution theory is developed based on epiconvergence methods. Some illustrations are provided, including consistent GMM estimation of a panel model with time varying individual effects, consistent limited information maximum likelihood estimation as a continuously updated GMM estimator, and consistent IV structural estimation using large numbers of weak or irrelevant instruments. Some simulations are reported.  相似文献   

14.
This paper develops a regression limit theory for nonstationary panel data with large numbers of cross section (n) and time series (T) observations. The limit theory allows for both sequential limits, wherein T followed by n, and joint limits where T, n simultaneously; and the relationship between these multidimensional limits is explored. The panel structures considered allow for no time series cointegration, heterogeneous cointegration, homogeneous cointegration, and near-homogeneous cointegration. The paper explores the existence of long-run average relations between integrated panel vectors when there is no individual time series cointegration and when there is heterogeneous cointegration. These relations are parameterized in terms of the matrix regression coefficient of the long-run average covariance matrix. In the case of homogeneous and near homogeneous cointegrating panels, a panel fully modified regression estimator is developed and studied. The limit theory enables us to test hypotheses about the long run average parameters both within and between subgroups of the full population.  相似文献   

15.
In this paper, we propose a simple bias–reduced log–periodogram regression estimator, ^dr, of the long–memory parameter, d, that eliminates the first– and higher–order biases of the Geweke and Porter–Hudak (1983) (GPH) estimator. The bias–reduced estimator is the same as the GPH estimator except that one includes frequencies to the power 2k for k=1,…,r, for some positive integer r, as additional regressors in the pseudo–regression model that yields the GPH estimator. The reduction in bias is obtained using assumptions on the spectrum only in a neighborhood of the zero frequency. Following the work of Robinson (1995b) and Hurvich, Deo, and Brodsky (1998), we establish the asymptotic bias, variance, and mean–squared error (MSE) of ^dr, determine the asymptotic MSE optimal choice of the number of frequencies, m, to include in the regression, and establish the asymptotic normality of ^dr. These results show that the bias of ^dr goes to zero at a faster rate than that of the GPH estimator when the normalized spectrum at zero is sufficiently smooth, but that its variance only is increased by a multiplicative constant. We show that the bias–reduced estimator ^dr attains the optimal rate of convergence for a class of spectral densities that includes those that are smooth of order s≥1 at zero when r≥(s−2)/2 and m is chosen appropriately. For s>2, the GPH estimator does not attain this rate. The proof uses results of Giraitis, Robinson, and Samarov (1997). We specify a data–dependent plug–in method for selecting the number of frequencies m to minimize asymptotic MSE for a given value of r. Some Monte Carlo simulation results for stationary Gaussian ARFIMA (1, d, 1) and (2, d, 0) models show that the bias–reduced estimators perform well relative to the standard log–periodogram regression estimator.  相似文献   

16.
This paper considers regression models for cross‐section data that exhibit cross‐section dependence due to common shocks, such as macroeconomic shocks. The paper analyzes the properties of least squares (LS) estimators in this context. The results of the paper allow for any form of cross‐section dependence and heterogeneity across population units. The probability limits of the LS estimators are determined, and necessary and sufficient conditions are given for consistency. The asymptotic distributions of the estimators are found to be mixed normal after recentering and scaling. The t, Wald, and F statistics are found to have asymptotic standard normal, χ2, and scaled χ2 distributions, respectively, under the null hypothesis when the conditions required for consistency of the parameter under test hold. However, the absolute values of t, Wald, and F statistics are found to diverge to infinity under the null hypothesis when these conditions fail. Confidence intervals exhibit similarly dichotomous behavior. Hence, common shocks are found to be innocuous in some circumstances, but quite problematic in others. Models with factor structures for errors and regressors are considered. Using the general results, conditions are determined under which consistency of the LS estimators holds and fails in models with factor structures. The results are extended to cover heterogeneous and functional factor structures in which common factors have different impacts on different population units.  相似文献   

17.
This paper presents a solution to an important econometric problem, namely the root n consistent estimation of nonlinear models with measurement errors in the explanatory variables, when one repeated observation of each mismeasured regressor is available. While a root n consistent estimator has been derived for polynomial specifications (see Hausman, Ichimura, Newey, and Powell (1991)), such an estimator for general nonlinear specifications has so far not been available. Using the additional information provided by the repeated observation, the suggested estimator separates the measurement error from the “true” value of the regressors thanks to a useful property of the Fourier transform: The Fourier transform converts the integral equations that relate the distribution of the unobserved “true” variables to the observed variables measured with error into algebraic equations. The solution to these equations yields enough information to identify arbitrary moments of the “true,” unobserved variables. The value of these moments can then be used to construct any estimator that can be written in terms of moments, including traditional linear and nonlinear least squares estimators, or general extremum estimators. The proposed estimator is shown to admit a representation in terms of an influence function, thus establishing its root n consistency and asymptotic normality. Monte Carlo evidence and an application to Engel curve estimation illustrate the usefulness of this new approach.  相似文献   

18.
In nonlinear panel data models, the incidental parameter problem remains a challenge to econometricians. Available solutions are often based on ingenious, model‐specific methods. In this paper, we propose a systematic approach to construct moment restrictions on common parameters that are free from the individual fixed effects. This is done by an orthogonal projection that differences out the unknown distribution function of individual effects. Our method applies generally in likelihood models with continuous dependent variables where a condition of non‐surjectivity holds. The resulting method‐of‐moments estimators are root‐N consistent (for fixed T) and asymptotically normal, under regularity conditions that we spell out. Several examples and a small‐scale simulation exercise complete the paper.  相似文献   

19.
This paper develops an inferential theory for factor models of large dimensions. The principal components estimator is considered because it is easy to compute and is asymptotically equivalent to the maximum likelihood estimator (if normality is assumed). We derive the rate of convergence and the limiting distributions of the estimated factors, factor loadings, and common components. The theory is developed within the framework of large cross sections (N) and a large time dimension (T), to which classical factor analysis does not apply. We show that the estimated common components are asymptotically normal with a convergence rate equal to the minimum of the square roots of N and T. The estimated factors and their loadings are generally normal, although not always so. The convergence rate of the estimated factors and factor loadings can be faster than that of the estimated common components. These results are obtained under general conditions that allow for correlations and heteroskedasticities in both dimensions. Stronger results are obtained when the idiosyncratic errors are serially uncorrelated and homoskedastic. A necessary and sufficient condition for consistency is derived for large N but fixed T.  相似文献   

20.
This paper examines the efficient estimation of partially identified models defined by moment inequalities that are convex in the parameter of interest. In such a setting, the identified set is itself convex and hence fully characterized by its support function. We provide conditions under which, despite being an infinite dimensional parameter, the support function admits √n‐consistent regular estimators. A semiparametric efficiency bound is then derived for its estimation, and it is shown that any regular estimator attaining it must also minimize a wide class of asymptotic loss functions. In addition, we show that the “plug‐in” estimator is efficient, and devise a consistent bootstrap procedure for estimating its limiting distribution. The setting we examine is related to an incomplete linear model studied in Beresteanu and Molinari (2008) and Bontemps, Magnac, and Maurin (2012), which further enables us to establish the semiparametric efficiency of their proposed estimators for that problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号