首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 0 毫秒
1.
《Risk analysis》2018,38(6):1202-1222
Toxoplasmosis is a cosmopolitan disease and has a broad range of hosts, including humans and several wild and domestic animals. The human infection is mostly acquired through the consumption of contaminated food and pork meat has been recognized as one of the major sources of transmission. There are, however, certain fundamental differences between countries; therefore, the present study specifically aims to evaluate the exposure of the Italian population to Toxoplasma gondii through the ingestion of several types of pork meat products habitually consumed in Italy and to estimate the annual number of human infections within two subgroups of the population. A quantitative risk assessment model was built for this reason and was enriched with new elements in comparison to other similar risk assessments in order to enhance its accuracy. Sensitivity analysis and two alternative scenarios were implemented to identify the factors that have the highest impact on risk and to simulate different plausible conditions, respectively. The estimated overall average number of new infections per year among adults is 12,513 and 92 for pregnant women. The baseline model showed that almost all these infections are associated with the consumption of fresh meat cuts and preparations (mean risk of infection varied between 4.5 × 10−5 and 5.5 × 10−5) and only a small percentage is due to fermented sausages/salami. On the contrary, salt‐cured meat products seem to pose minor risk but further investigations are needed to clarify still unclear aspects. Among all the considered variables, cooking temperature and bradyzoites’ concentration in muscle impacted most the risk.  相似文献   

2.
There is increasing interest in the development of a microbial risk assessment methodology for regulatory and operational decision making. This document presents a methodology for assessing risks to human health from pathogen exposure using a population-based model that explicitly accounts for properties unique to an infectious disease process, specifically secondary transmission and immunity. To demonstrate the applicability of this risk-based method, numerical simulations were carried out for a case study example in which the route of exposure was direct consumption of biosolids-amended soil and the pathogen present in the soil was enterovirus. The output from the case study yielded a decision tree that differentiates between conditions in which the relative risk from biosolids exposure is high and those conditions in which the relative risk from biosolids is low. This decision tree illustrates the interaction among the important factors in quantifying risk. For the case study example, these factors include biosolids treatment processes, the pathogen shedding rate of infectious individuals, secondary transmission, and immunity. Further refinement in methods for determining biosolids exposures under field conditions would certainly increase the utility of these approaches.  相似文献   

3.
Modeling Logistic Performance in Quantitative Microbial Risk Assessment   总被引:1,自引:0,他引:1  
In quantitative microbial risk assessment (QMRA), food safety in the food chain is modeled and simulated. In general, prevalences, concentrations, and numbers of microorganisms in media are investigated in the different steps from farm to fork. The underlying rates and conditions (such as storage times, temperatures, gas conditions, and their distributions) are determined. However, the logistic chain with its queues (storages, shelves) and mechanisms for ordering products is usually not taken into account. As a consequence, storage times—mutually dependent in successive steps in the chain—cannot be described adequately. This may have a great impact on the tails of risk distributions. Because food safety risks are generally very small, it is crucial to model the tails of (underlying) distributions as accurately as possible. Logistic performance can be modeled by describing the underlying planning and scheduling mechanisms in discrete-event modeling. This is common practice in operations research, specifically in supply chain management. In this article, we present the application of discrete-event modeling in the context of a QMRA for  Listeria monocytogenes  in fresh-cut iceberg lettuce. We show the potential value of discrete-event modeling in QMRA by calculating logistic interventions (modifications in the logistic chain) and determining their significance with respect to food safety.  相似文献   

4.
A quantitative microbial risk assessment (QMRA) according to the Codex Alimentarius Principles is conducted to evaluate the risk of human salmonellosis through household consumption of fresh minced pork meat in Belgium. The quantitative exposure assessment is carried out by building a modular risk model, called the METZOON-model, which covers the pork production from farm to fork. In the METZOON-model, the food production pathway is split up in six consecutive modules: (1) primary production, (2) transport and lairage, (3) slaughterhouse, (4) postprocessing, (5) distribution and storage, and (6) preparation and consumption. All the modules are developed to resemble as closely as possible the Belgian situation, making use of the available national data. Several statistical refinements and improved modeling techniques are proposed. The model produces highly realistic results. The baseline predicted number of annual salmonellosis cases is 20,513 ( SD 9061.45). The risk is estimated higher for the susceptible population (estimate  4.713 × 10−5; SD 1.466 × 10−5  ) compared to the normal population  (estimate 7.704 × 10−6; SD 5.414 × 10−6)  and is mainly due to undercooking and to a smaller extent to cross-contamination in the kitchen via cook's hands.  相似文献   

5.
Climate change may impact waterborne and foodborne infectious disease, but to what extent is uncertain. Estimating climate‐change‐associated relative infection risks from exposure to viruses, bacteria, or parasites in water or food is critical for guiding adaptation measures. We present a computational tool for strategic decision making that describes the behavior of pathogens using location‐specific input data under current and projected climate conditions. Pathogen‐pathway combinations are available for exposure to norovirus, Campylobacter, Cryptosporidium, and noncholera Vibrio species via drinking water, bathing water, oysters, or chicken fillets. Infection risk outcomes generated by the tool under current climate conditions correspond with those published in the literature. The tool demonstrates that increasing temperatures lead to increasing risks for infection with Campylobacter from consuming raw/undercooked chicken fillet and for Vibrio from water exposure. Increasing frequencies of drought generally lead to an elevated infection risk of exposure to persistent pathogens such as norovirus and Cryptosporidium, but decreasing risk of exposure to rapidly inactivating pathogens, like Campylobacter. The opposite is the case with increasing annual precipitation; an upsurge of heavy rainfall events leads to more peaks in infection risks in all cases. The interdisciplinary tool presented here can be used to guide climate change adaptation strategies focused on infectious diseases.  相似文献   

6.
Quantitative microbial risk assessment was used to assess the risk of norovirus gastroenteritis associated with consumption of raw vegetables irrigated with highly treated municipal wastewater, using Melbourne, Australia as an example. In the absence of local norovirus concentrations, three methods were developed: (1) published concentrations of norovirus in raw sewage, (2) an epidemiological method using Melbourne prevalence of norovirus, and (3) an adjustment of method 1 to account for prevalence of norovirus. The methods produced highly variable results with estimates of norovirus concentrations in raw sewage ranging from 104 per milliliter to 107 per milliliter and treated effluent from 1 × 10?3 per milliliter to 3 per milliliter (95th percentiles). Annual disease burden was very low using method 1, from 4 to 5 log10 disability adjusted life years (DALYs) below the 10?6 threshold (0.005–0.1 illnesses per year). Results of method 2 were higher, with some scenarios exceeding the threshold by up to 2 log10 DALYs (up to 95,000 illnesses per year). Method 3, thought to be most representative of Melbourne conditions, predicted annual disease burdens >2 log10 DALYs lower than the threshold (~4 additional cases per year). Sensitivity analyses demonstrated that input parameters used to estimate norovirus concentration accounted for much of the model output variability. This model, while constrained by a lack of knowledge of sewage concentrations, used the best available information and sound logic. Results suggest that current wastewater reuse behaviors in Melbourne are unlikely to cause norovirus risks in excess of the annual DALY health target.  相似文献   

7.
Toxoplasma gondii is a protozoan parasite that is responsible for approximately 24% of deaths attributed to foodborne pathogens in the United States. It is thought that a substantial portion of human T. gondii infections is acquired through the consumption of meats. The dose‐response relationship for human exposures to T. gondii‐infected meat is unknown because no human data are available. The goal of this study was to develop and validate dose‐response models based on animal studies, and to compute scaling factors so that animal‐derived models can predict T. gondii infection in humans. Relevant studies in literature were collected and appropriate studies were selected based on animal species, stage, genotype of T. gondii, and route of infection. Data were pooled and fitted to four sigmoidal‐shaped mathematical models, and model parameters were estimated using maximum likelihood estimation. Data from a mouse study were selected to develop the dose‐response relationship. Exponential and beta‐Poisson models, which predicted similar responses, were selected as reasonable dose‐response models based on their simplicity, biological plausibility, and goodness fit. A confidence interval of the parameter was determined by constructing 10,000 bootstrap samples. Scaling factors were computed by matching the predicted infection cases with the epidemiological data. Mouse‐derived models were validated against data for the dose‐infection relationship in rats. A human dose‐response model was developed as P (d) = 1–exp (–0.0015 × 0.005 × d) or P (d) = 1–(1 + d × 0.003 / 582.414)?1.479. Both models predict the human response after consuming T. gondii‐infected meats, and provide an enhanced risk characterization in a quantitative microbial risk assessment model for this pathogen.  相似文献   

8.
The aim of this study was to develop a modified quantitative microbial risk assessment (QMRA) framework that could be applied as a decision support tool to choose between alternative drinking water interventions in the developing context. The impact of different household water treatment (HWT) interventions on the overall incidence of diarrheal disease and disability adjusted life years (DALYs) was estimated, without relying on source water pathogen concentration as the starting point for the analysis. A framework was developed and a software tool constructed and then implemented for an illustrative case study for Nepal based on published scientific data. Coagulation combined with free chlorine disinfection provided the greatest estimated health gains in the short term; however, when long‐term compliance was incorporated into the calculations, the preferred intervention was porous ceramic filtration. The model demonstrates how the QMRA framework can be used to integrate evidence from different studies to inform management decisions, and in particular to prioritize the next best intervention with respect to estimated reduction in diarrheal incidence. This study only considered HWT interventions; it is recognized that a systematic consideration of sanitation, recreation, and drinking water pathways is important for effective management of waterborne transmission of pathogens, and the approach could be expanded to consider the broader water‐related context.  相似文献   

9.
Estimating the risk of infections or other outcomes incident to pathogen exposure is a primary goal of quantitative microbial risk assessment (QMRA). Such estimates are useful to predict population-level risks, to evaluate exposures based on normative or tolerable risk guidelines, and to interpret the likely public health relevance of microbial measurements in environmental media. To evaluate alternative control measures (interventions), ratio estimates of effect (e.g., odds and risk ratios) are needed that are more broadly interpretable in the health sciences and consistent with convention in epidemiology. In this paper, we propose a general method for estimating widely used ratio measures of effect derived from stochastic QMRA approaches, including the generation of appropriate confidence intervals. Such QMRA-derived ratios can be used as a basis for evaluating interventions via hypothesis testing and for inclusion in systematic reviews and meta-analyses in a form consistent with risk estimation approaches commonly used in epidemiology.  相似文献   

10.
Tucker Burch 《Risk analysis》2019,39(3):599-615
The assumptions underlying quantitative microbial risk assessment (QMRA) are simple and biologically plausible, but QMRA predictions have never been validated for many pathogens. The objective of this study was to validate QMRA predictions against epidemiological measurements from outbreaks of waterborne gastrointestinal disease. I screened 2,000 papers and identified 12 outbreaks with the necessary data: disease rates measured using epidemiological methods and pathogen concentrations measured in the source water. Eight of the 12 outbreaks were caused by Cryptosporidium, three by Giardia, and one by norovirus. Disease rates varied from 5.5 × 10?6 to 1.1 × 10?2 cases/person‐day, and reported pathogen concentrations varied from 1.2 × 10?4 to 8.6 × 102 per liter. I used these concentrations with single‐hit dose–response models for all three pathogens to conduct QMRA, producing both point and interval predictions of disease rates for each outbreak. Comparison of QMRA predictions to epidemiological measurements showed good agreement; interval predictions contained measured disease rates for 9 of 12 outbreaks, with point predictions off by factors of 1.0–120 (median = 4.8). Furthermore, 11 outbreaks occurred at mean doses of less than 1 pathogen per exposure. Measured disease rates for these outbreaks were clearly consistent with a single‐hit model, and not with a “two‐hit” threshold model. These results demonstrate the validity of QMRA for predicting disease rates due to Cryptosporidium and Giardia.  相似文献   

11.
The conservation of freshwater is of both global and national importance, and in the United States, agriculture is one of the largest consumers of this resource. Reduction of the strain farming puts on local surface or groundwater is vital for ensuring resilience in the face of climate change, and one possible option is to irrigate with a combination of freshwater and reclaimed water from municipal wastewater treatment facilities. However, this wastewater can contain pathogens that are harmful to human health, such as Legionella pneumophila, which is a bacterium that can survive aerosolization and airborne transportation and cause severe pneumonia when inhaled. To assess an individual adult's risk of infection with L. pneumophila from a single exposure to agricultural spray irrigation, a quantitative microbial risk assessment was conducted for a scenario of spray irrigation in central Illinois, for the growing seasons in 2017, 2018, and 2019. The assessment found that the mean risk of infection for a single exposure exceeded the safety threshold of 10–6 infections/exposure up to 1 km from a low-pressure irrigator and up to 2 km from a high-pressure irrigator, although no median risk exceeded the threshold for any distance or irrigator pressure. These findings suggest that spray irrigation with treated municipal wastewater could be a viable option for reducing freshwater consumption in Midwest farming, as long as irrigation on windy days is avoided and close proximity to the active irrigator is limited.  相似文献   

12.
We developed a quantitative risk assessment model using a discrete event framework to quantify and study the risk associated with norovirus transmission to consumers through food contaminated by infected food employees in a retail food setting. This study focused on the impact of ill food workers experiencing symptoms of diarrhea and vomiting and potential control measures for the transmission of norovirus to foods. The model examined the behavior of food employees regarding exclusion from work while ill and after symptom resolution and preventive measures limiting food contamination during preparation. The mean numbers of infected customers estimated for 21 scenarios were compared to the estimate for a baseline scenario representing current practices. Results show that prevention strategies examined could not prevent norovirus transmission to food when a symptomatic employee was present in the food establishment. Compliance with exclusion from work of symptomatic food employees is thus critical, with an estimated range of 75–226% of the baseline mean for full to no compliance, respectively. Results also suggest that efficient handwashing, handwashing frequency associated with gloving compliance, and elimination of contact between hands, faucets, and door handles in restrooms reduced the mean number of infected customers to 58%, 62%, and 75% of the baseline, respectively. This study provides quantitative data to evaluate the relative efficacy of policy and practices at retail to reduce norovirus illnesses and provides new insights into the interactions and interplay of prevention strategies and compliance in reducing transmission of foodborne norovirus.  相似文献   

13.
Dose–response modeling of biological agents has traditionally focused on describing laboratory‐derived experimental data. Limited consideration has been given to understanding those factors that are controlled in a laboratory, but are likely to occur in real‐world scenarios. In this study, a probabilistic framework is developed that extends Brookmeyer's competing‐risks dose–response model to allow for variation in factors such as dose‐dispersion, dose‐deposition, and other within‐host parameters. With data sets drawn from dose–response experiments of inhalational anthrax, plague, and tularemia, we illustrate how for certain cases, there is the potential for overestimation of infection numbers arising from models that consider only the experimental data in isolation.  相似文献   

14.
As part of its periodic re-evaluation of particulate matter (PM) standards, the U.S. Environmental Protection Agency estimated the health risk reductions associated with attainment of alternative PM standards in two locations in the United States with relatively complete air quality data: Philadelphia and Los Angeles. PM standards at the time of the analysis were defined for particles of aerodynamic diameter less than or equal to 10 microm, denoted as PM-10. The risk analyses estimated the risk reductions that would be associated with changing from attainment of the PM-10 standards then in place to attainment of alternative standards using an indicator measuring fine particles, defined as those particles of aerodynamic diameter less than or equal to 2.5 microm and denoted as PM-2.5. Annual average PM-2.5 standards of 12.5, 15, and 20 microg/m3 were considered in various combinations with daily PM-2.5 standards of 50 and 65 microg/m3. Attainment of a standard or set of standards was simulated by a proportional rollback of "as is" daily PM concentrations to daily PM concentrations that would just meet the standard(s). The predicted reductions in the incidence of health effects varied from zero, for those alternative standards already being met, to substantial reductions of over 88% of all PM-associated incidence (e.g., in mortality associated with long-term exposures in Los Angeles, under attainment of an annual standard of 12.5 microg/m3). Sensitivity analyses and integrated uncertainty analyses assessed the multiple-source uncertainty surrounding estimates of risk reduction.  相似文献   

15.
《Risk analysis》2018,38(6):1107-1115
Coal combustion residuals (CCRs) are composed of various constituents, including radioactive materials. The objective of this study was to utilize methodology on radionuclide risk assessment from the Environmental Protection Agency (EPA) to estimate the potential cancer risks associated with residential exposure to CCR‐containing soil. We evaluated potential radionuclide exposure via soil ingestion, inhalation of soil particulates, and external exposure to ionizing radiation using published CCR radioactivity values for 232Th, 228Ra, 238U, and 226Ra from the Appalachia, Illinois, and Powder River coal basins. Mean and upper‐bound cancer risks were estimated individually for each radionuclide, exposure pathway, and coal basin. For each radionuclide at each coal basin, external exposure to ionizing radiation contributed the greatest to the overall risk estimate, followed by incidental ingestion of soil and inhalation of soil particulates. The mean cancer risks by route of exposure were 2.01 × 10−6 (ingestion), 6.80 × 10−9 (inhalation), and 3.66 × 10−5 (external), while the upper bound cancer risks were 3.70 × 10−6 (ingestion), 1.18 × 10−8 (inhalation), and 6.15 × 10−5 (external), using summed radionuclide‐specific data from all locations. The upper bound cancer risk from all routes of exposure was 6.52 × 10−5. These estimated cancer risks were within the EPA's acceptable cancer risk range of 1 × 10−6 to 1 × 10−4. If the CCR radioactivity values used in this analysis are generally representative of CCR waste streams, then our findings suggest that CCRs would not be expected to pose a significant radiological risk to residents living in areas where contact with CCR‐containing soils might occur.  相似文献   

16.
A point of view is suggested from which the Hierarchical Holographic Modeling (HHM) method can be seen as one more method within the Theory of Scenario Structuring (TSS), which is that part of Quantitative Risk Assessment having to do with the task of identifying the set of risk scenarios. Seen in this way, HHM brings strongly to our attention the fact that different methods within TSS can result in different sets of risk scenarios for the same underlying problem. Although this is not a problem practically, it is a bit awkward conceptually from the standpoint of the "set of triplets" definition of risk, in which the scenario set is part of the definition. Accordingly, the present article suggests a refinement to the set of triplets definition, which removes the specific set of scenarios, found by any of the TSS methods, from the definition of risk and casts it, instead, as an approximation to the "true" set of scenarios that is native to the problem at hand and not affected by the TSS method used.  相似文献   

17.
A Latin Hypercube probabilistic risk assessment methodology was employed in the assessment of health risks associated with exposures to contaminated sediment and biota in an estuary in the Tidewater region of Virginia. The primary contaminants were polychlorinated biphenyls (PCBs), polychlorinated terphenyls (PCTs), polynuclear aromatic hydrocarbons (PAHs), and metals released into the estuary from a storm sewer system. The exposure pathways associated with the highest contaminant intake and risks were dermal contact with contaminated sediment and ingestion of contaminated aquatic and terrestrial biota from the contaminated area. As expected, all of the output probability distributions of risk were highly skewed, and the ratios of the expected value (mean) to median risk estimates ranged from 1.4 to 14.8 for the various exposed populations. The 99th percentile risk estimates were as much as two orders of magnitude above the mean risk estimates. For the sediment exposure pathways, the stability of the median risk estimates was found to be much greater than the stability of the expected value risk estimates. The interrun variability in the median risk estimate was found to be +/-1.9% at 3000 iterations. The interrun stability of the mean risk estimates was found to be approximately equal to that of the 95th percentile estimates at any number of iterations. The variation in neither contaminant concentrations nor any other single input variable contributed disproportionately to the overall simulation variance. The inclusion or exclusion of spatial correlations among contaminant concentrations in the simulation model did not significantly effect either the magnitude or the variance of the simulation risk estimates for sediment exposures.  相似文献   

18.
The Monte Carlo (MC) simulation approach is traditionally used in food safety risk assessment to study quantitative microbial risk assessment (QMRA) models. When experimental data are available, performing Bayesian inference is a good alternative approach that allows backward calculation in a stochastic QMRA model to update the experts’ knowledge about the microbial dynamics of a given food‐borne pathogen. In this article, we propose a complex example where Bayesian inference is applied to a high‐dimensional second‐order QMRA model. The case study is a farm‐to‐fork QMRA model considering genetic diversity of Bacillus cereus in a cooked, pasteurized, and chilled courgette purée. Experimental data are Bacillus cereus concentrations measured in packages of courgette purées stored at different time‐temperature profiles after pasteurization. To perform a Bayesian inference, we first built an augmented Bayesian network by linking a second‐order QMRA model to the available contamination data. We then ran a Markov chain Monte Carlo (MCMC) algorithm to update all the unknown concentrations and unknown quantities of the augmented model. About 25% of the prior beliefs are strongly updated, leading to a reduction in uncertainty. Some updates interestingly question the QMRA model.  相似文献   

19.
We develop a model for bacterial cross-contamination during food preparation in the domestic kitchen and apply this to the case of Campylobacter-contaminated chicken breast. Building blocks of the model are the routines performed during food preparation, with their associated probabilities of bacterial transfer between food items and kitchen utensils. The model is used in a quantitative microbiological risk assessment (QMRA) of Campylobacter in the Netherlands. Using parameter values from the literature and performing elementary sensitivity analyses, we show that cross-contamination can contribute significantly to the risk of Campylobacter infection and find that cleaning frequency of kitchen utensils and thoroughness of rinsing of raw food items after preparation has more impact on cross-contamination than previously emphasized. Furthermore, we argue that especially more behavioral data on hygiene during food preparation is needed for a comprehensive Campylobacter risk assessment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号