首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article develops a Bayesian belief network model for the prediction of accident consequences in the Tianjin port. The study starts with a statistical analysis of historical accident data of six years from 2008 to 2013. Then a Bayesian belief network is constructed to express the dependencies between the indicator variables and accident consequences. The statistics and expert knowledge are synthesized in the Bayesian belief network model to obtain the probability distribution of the consequences. By a sensitivity analysis, several indicator variables that have influence on the consequences are identified, including navigational area, ship type and time of the day. The results indicate that the consequences are most sensitive to the position where the accidents occurred, followed by time of day and ship length. The results also reflect that the navigational risk of the Tianjin port is at the acceptable level, despite that there is more room of improvement. These results can be used by the Maritime Safety Administration to take effective measures to enhance maritime safety in the Tianjin port.  相似文献   

2.
《Risk analysis》2018,38(2):376-391
During an outbreak of Ebola virus disease (EVD), hospitals’ connections to municipal wastewater systems may provide a path for patient waste bearing infectious viral particles to pass from the hospital into the wastewater treatment system, potentially posing risks to sewer and wastewater workers. To quantify these risks, we developed a Bayesian belief network model incorporating data on virus behavior and survival along with structural characteristics of hospitals and wastewater treatment systems. We applied the model to assess risks under several different scenarios of workers’ exposure to wastewater for a wastewater system typical of a mid‐sized U.S. city. The model calculates a median daily risk of developing EVD of approximately 6.1×10−12 (90% confidence interval: 1.0×10−12 to 5.4×10−9; mean 1.8×10−6) when no prior exposure conditions are specified. Under a worst‐case scenario in which a worker stationed in the sewer adjacent to the hospital accidentally ingests several drops (0.35 mL) of wastewater, median risk is 5.8×10−4 (90% CI: 8.8×10−7 to 9.5×10−2; mean 3.2×10−2) . Disinfection of patient waste with peracetic acid for 15 minutes prior to flushing decreases the estimated median risk to 3.8×10−7 (90% CI: 4.1×10−9 to 8.6×10−5; mean 2.9×10−5). The results suggest that requiring hospitals to disinfect EVD patient waste prior to flushing may be advisable. The modeling framework can provide insight into managing patient waste during future outbreaks of highly virulent infectious pathogens.  相似文献   

3.
Bayesian networks (BNs) are graphical modeling tools that are generally recommended for exploring what‐if scenarios, visualizing systems and problems, and for communication between stakeholders during decision making. In this article, we investigate their potential for exploring different perspectives in trade disputes. To do so, we draw on a specific case study that was arbitrated by the World Trade Organization (WTO): the Australia‐New Zealand apples dispute. The dispute centered on disagreement about judgments contained within Australia's 2006 import risk analysis (IRA). We built a range of BNs of increasing complexity that modeled various approaches to undertaking IRAs, from the basic qualitative and semi‐quantitative risk analyses routinely performed in government agencies, to the more complex quantitative simulation undertaken by Australia in the apples dispute. We found the BNs useful for exploring disagreements under uncertainty because they are probabilistic and transparently represent steps in the analysis. Different scenarios and evidence can easily be entered. Specifically, we explore the sensitivity of the risk output to different judgments (particularly volume of trade). Thus, we explore how BNs could usefully aid WTO dispute settlement. We conclude that BNs are preferable to basic qualitative and semi‐quantitative risk analyses because they offer an accessible interface and are mathematically sound. However, most current BN modeling tools are limited compared with complex simulations, as was used in the 2006 apples IRA. Although complex simulations may be more accurate, they are a black box for stakeholders. BNs have the potential to be a transparent aid to complex decision making, but they are currently computationally limited. Recent technological software developments are promising.  相似文献   

4.
In this study, a methodology has been proposed for risk analysis of dust explosion scenarios based on Bayesian network. Our methodology also benefits from a bow‐tie diagram to better represent the logical relationships existing among contributing factors and consequences of dust explosions. In this study, the risks of dust explosion scenarios are evaluated, taking into account common cause failures and dependencies among root events and possible consequences. Using a diagnostic analysis, dust particle properties, oxygen concentration, and safety training of staff are identified as the most critical root events leading to dust explosions. The probability adaptation concept is also used for sequential updating and thus learning from past dust explosion accidents, which is of great importance in dynamic risk assessment and management. We also apply the proposed methodology to a case study to model dust explosion scenarios, to estimate the envisaged risks, and to identify the vulnerable parts of the system that need additional safety measures.  相似文献   

5.
Prediction of natural disasters and their consequences is difficult due to the uncertainties and complexity of multiple related factors. This article explores the use of domain knowledge and spatial data to construct a Bayesian network (BN) that facilitates the integration of multiple factors and quantification of uncertainties within a consistent system for assessment of catastrophic risk. A BN is chosen due to its advantages such as merging multiple source data and domain knowledge in a consistent system, learning from the data set, inference with missing data, and support of decision making. A key advantage of our methodology is the combination of domain knowledge and learning from the data to construct a robust network. To improve the assessment, we employ spatial data analysis and data mining to extend the training data set, select risk factors, and fine‐tune the network. Another major advantage of our methodology is the integration of an optimal discretizer, informative feature selector, learners, search strategies for local topologies, and Bayesian model averaging. These techniques all contribute to a robust prediction of risk probability of natural disasters. In the flood disaster's study, our methodology achieved a better probability of detection of high risk, a better precision, and a better ROC area compared with other methods, using both cross‐validation and prediction of catastrophic risk based on historic data. Our results suggest that BN is a good alternative for risk assessment and as a decision tool in the management of catastrophic risk.  相似文献   

6.
We conducted a regional‐scale integrated ecological and human health risk assessment by applying the relative risk model with Bayesian networks (BN‐RRM) to a case study of the South River, Virginia mercury‐contaminated site. Risk to four ecological services of the South River (human health, water quality, recreation, and the recreational fishery) was evaluated using a multiple stressor–multiple endpoint approach. These four ecological services were selected as endpoints based on stakeholder feedback and prioritized management goals for the river. The BN‐RRM approach allowed for the calculation of relative risk to 14 biotic, human health, recreation, and water quality endpoints from chemical and ecological stressors in five risk regions of the South River. Results indicated that water quality and the recreational fishery were the ecological services at highest risk in the South River. Human health risk for users of the South River was low relative to the risk to other endpoints. Risk to recreation in the South River was moderate with little spatial variability among the five risk regions. Sensitivity and uncertainty analysis identified stressors and other parameters that influence risk for each endpoint in each risk region. This research demonstrates a probabilistic approach to integrated ecological and human health risk assessment that considers the effects of chemical and ecological stressors across the landscape.  相似文献   

7.
Tunneling excavation is bound to produce significant disturbances to surrounding environments, and the tunnel‐induced damage to adjacent underground buried pipelines is of considerable importance for geotechnical practice. A fuzzy Bayesian networks (FBNs) based approach for safety risk analysis is developed in this article with detailed step‐by‐step procedures, consisting of risk mechanism analysis, the FBN model establishment, fuzzification, FBN‐based inference, defuzzification, and decision making. In accordance with the failure mechanism analysis, a tunnel‐induced pipeline damage model is proposed to reveal the cause‐effect relationships between the pipeline damage and its influential variables. In terms of the fuzzification process, an expert confidence indicator is proposed to reveal the reliability of the data when determining the fuzzy probability of occurrence of basic events, with both the judgment ability level and the subjectivity reliability level taken into account. By means of the fuzzy Bayesian inference, the approach proposed in this article is capable of calculating the probability distribution of potential safety risks and identifying the most likely potential causes of accidents under both prior knowledge and given evidence circumstances. A case concerning the safety analysis of underground buried pipelines adjacent to the construction of the Wuhan Yangtze River Tunnel is presented. The results demonstrate the feasibility of the proposed FBN approach and its application potential. The proposed approach can be used as a decision tool to provide support for safety assurance and management in tunnel construction, and thus increase the likelihood of a successful project in a complex project environment.  相似文献   

8.
针对一类不确定多属性决策问题,提出了基于贝叶斯网络推理的信息集结决策模型。根据决策依据信息,建立了决策方案综合属性值优劣的范围估计模型;由影响方案属性的因素构成的贝叶斯网络拓扑结构图,建立了基于贝叶斯推理的方案综合属性值确定模型;基于两类信息的内在关联性,提出了两种结果集结的最大相似度模型,最后得出方案综合属性值,算例表明基于贝叶斯网络推理的双重不确定信息集结模型是有效的。  相似文献   

9.
We analyze the risk of severe fatal accidents causing five or more fatalities and for nine different activities covering the entire oil chain. Included are exploration and extraction, transport by different modes, refining and final end use in power plants, heating or gas stations. The risks are quantified separately for OECD and non‐OECD countries and trends are calculated. Risk is analyzed by employing a Bayesian hierarchical model yielding analytical functions for both frequency (Poisson) and severity distributions (Generalized Pareto) as well as frequency trends. This approach addresses a key problem in risk estimation—namely the scarcity of data resulting in high uncertainties in particular for the risk of extreme events, where the risk is extrapolated beyond the historically most severe accidents. Bayesian data analysis allows the pooling of information from different data sets covering, for example, the different stages of the energy chains or different modes of transportation. In addition, it also inherently delivers a measure of uncertainty. This approach provides a framework, which comprehensively covers risk throughout the oil chain, allowing the allocation of risk in sustainability assessments. It also permits the progressive addition of new data to refine the risk estimates. Frequency, severity, and trends show substantial differences between the activities, emphasizing the need for detailed risk analysis.  相似文献   

10.
Utility functions in the form of tables or matrices have often been used to combine discretely rated decision‐making criteria. Matrix elements are usually specified individually, so no one rule or principle can be easily stated for the utility function as a whole. A series of five matrices are presented that aggregate criteria two at a time using simple rules that express a varying degree of constraint of the lower rating over the higher. A further nine possible matrices were obtained by using a different rule either side of the main axis of the matrix to describe situations where the criteria have a differential influence on the outcome. Uncertainties in the criteria are represented by three alternative frequency distributions from which the assessors select the most appropriate. The output of the utility function is a distribution of rating frequencies that is dependent on the distributions of the input criteria. In pest risk analysis (PRA), seven of these utility functions were required to mimic the logic by which assessors for the European and Mediterranean Plant Protection Organization arrive at an overall rating of pest risk. The framework enables the development of PRAs that are consistent and easy to understand, criticize, compare, and change. When tested in workshops, PRA practitioners thought that the approach accorded with both the logic and the level of resolution that they used in the risk assessments.  相似文献   

11.
The Finnish salmonella control program (FSCP) for beef production is based on both randomized and selective testing of herds and animals. Sampling of individual animals in abattoirs is randomized. Herds are selectively tested for salmonella on the basis of clinical symptoms and/or other factors. Risk assessment of FSCP is inherently difficult due to the complexity of the complete data set, especially if the detailed labeling of the testing types is lost. However, for a risk assessment of the whole production chain, methods for exploiting all available data should be considered. For this purpose, a hierarchical Bayesian model of true salmonella prevalence was constructed to combine information at different levels of aggregation: herds in geographical regions and individual animals arriving for slaughter. The conditional (municipality specific) probability of selection of a herd for testing was modeled given the underlying true infection status of the herd and information about the general sampling activity in the specific region. The model also accounted for the overall sensitivity of the sampling methods, both at the herd and at the animal level. In 1999, the 95% posterior probability intervals of true salmonella prevalence in the herd population, in individual cattle, and in slaughter animal populations were [0.54%, 1.4%] (mode 0.8%), [0.15%, 0.39%] (mode 0.2%), and [0.12%, 0.36%] (mode 0.2%), respectively. The results will be further exploited in other risk assessments focusing on the subsequent parts of the beef production chain, and in evaluation of the FSCP.  相似文献   

12.
Coastal areas typically have high social and economic development and are likely to suffer huge losses due to tropical cyclones. These cyclones have a great impact on the transportation network, but there have been a limited number of studies about tropical‐cyclone‐induced transportation network functional damages, especially in Asia. This study develops an innovative measurement and analytical tool for highway network functional damage and risk in the context of a tropical cyclone, with which we explored the critical spatial characteristics of tropical cyclones with regard to functional damage to a highway network by developing linear regression models to quantify their relationship. Furthermore, we assessed the network's functional risk and calculated the return periods under different damage levels. In our analyses, we consider the real‐world highway network of Hainan province, China. Our results illustrate that the most important spatial characteristics were location (in particular, the midlands), travel distance, landfalling status, and origin coordinates. However, the trajectory direction did not obviously affect the results. Our analyses indicate that the highway network of Hainan province may suffer from a 90% functional damage scenario every 4.28 years. These results have critical policy implications for the transport sector in reference to emergency planning and disaster reduction.  相似文献   

13.
This article demonstrates application of sensitivity analysis to risk assessment models with two-dimensional probabilistic frameworks that distinguish between variability and uncertainty. A microbial food safety process risk (MFSPR) model is used as a test bed. The process of identifying key controllable inputs and key sources of uncertainty using sensitivity analysis is challenged by typical characteristics of MFSPR models such as nonlinearity, thresholds, interactions, and categorical inputs. Among many available sensitivity analysis methods, analysis of variance (ANOVA) is evaluated in comparison to commonly used methods based on correlation coefficients. In a two-dimensional risk model, the identification of key controllable inputs that can be prioritized with respect to risk management is confounded by uncertainty. However, as shown here, ANOVA provided robust insights regarding controllable inputs most likely to lead to effective risk reduction despite uncertainty. ANOVA appropriately selected the top six important inputs, while correlation-based methods provided misleading insights. Bootstrap simulation is used to quantify uncertainty in ranks of inputs due to sampling error. For the selected sample size, differences in F values of 60% or more were associated with clear differences in rank order between inputs. Sensitivity analysis results identified inputs related to the storage of ground beef servings at home as the most important. Risk management recommendations are suggested in the form of a consumer advisory for better handling and storage practices.  相似文献   

14.
Ecological risk from the development of a wetland is assessed quantitatively by means of a new risk measure, expected loss of biodiversity (ELB). ELB is defined as the weighted sum of the increments in the probabilities of extinction of the species living in the wetland due to its loss. The weighting for a particular species is calculated according to the length of the branch on the phylogenetic tree that will be lost if the species becomes extinct. The length of the branch on the phylogenetic tree is regarded as reflecting the extent of contribution of the species to the taxonomic diversity of the world of living things. The increments in the probabilities of extinction are calculated by a simulation used for making the Red List for vascular plants in Japan. The resulting ELB for the loss of Nakaikemi wetland is 9,200 years. This result is combined with the economic costs for conservation of the wetland to produce a value for the indicator of the cost per unit of biodiversity saved. Depending on the scenario, the value is 13,000 yen per year-ELB or 110,000 to 420,000 yen per year-ELB (1 US dollar = 110 yen in 1999).  相似文献   

15.
This article presents an iterative six‐step risk analysis methodology based on hybrid Bayesian networks (BNs). In typical risk analysis, systems are usually modeled as discrete and Boolean variables with constant failure rates via fault trees. Nevertheless, in many cases, it is not possible to perform an efficient analysis using only discrete and Boolean variables. The approach put forward by the proposed methodology makes use of BNs and incorporates recent developments that facilitate the use of continuous variables whose values may have any probability distributions. Thus, this approach makes the methodology particularly useful in cases where the available data for quantification of hazardous events probabilities are scarce or nonexistent, there is dependence among events, or when nonbinary events are involved. The methodology is applied to the risk analysis of a regasification system of liquefied natural gas (LNG) on board an FSRU (floating, storage, and regasification unit). LNG is becoming an important energy source option and the world's capacity to produce LNG is surging. Large reserves of natural gas exist worldwide, particularly in areas where the resources exceed the demand. Thus, this natural gas is liquefied for shipping and the storage and regasification process usually occurs at onshore plants. However, a new option for LNG storage and regasification has been proposed: the FSRU. As very few FSRUs have been put into operation, relevant failure data on FSRU systems are scarce. The results show the usefulness of the proposed methodology for cases where the risk analysis must be performed under considerable uncertainty.  相似文献   

16.
The Monte Carlo (MC) simulation approach is traditionally used in food safety risk assessment to study quantitative microbial risk assessment (QMRA) models. When experimental data are available, performing Bayesian inference is a good alternative approach that allows backward calculation in a stochastic QMRA model to update the experts’ knowledge about the microbial dynamics of a given food‐borne pathogen. In this article, we propose a complex example where Bayesian inference is applied to a high‐dimensional second‐order QMRA model. The case study is a farm‐to‐fork QMRA model considering genetic diversity of Bacillus cereus in a cooked, pasteurized, and chilled courgette purée. Experimental data are Bacillus cereus concentrations measured in packages of courgette purées stored at different time‐temperature profiles after pasteurization. To perform a Bayesian inference, we first built an augmented Bayesian network by linking a second‐order QMRA model to the available contamination data. We then ran a Markov chain Monte Carlo (MCMC) algorithm to update all the unknown concentrations and unknown quantities of the augmented model. About 25% of the prior beliefs are strongly updated, leading to a reduction in uncertainty. Some updates interestingly question the QMRA model.  相似文献   

17.
The distributional approach for uncertainty analysis in cancer risk assessment is reviewed and extended. The method considers a combination of bioassay study results, targeted experiments, and expert judgment regarding biological mechanisms to predict a probability distribution for uncertain cancer risks. Probabilities are assigned to alternative model components, including the determination of human carcinogenicity, mode of action, the dosimetry measure for exposure, the mathematical form of the dose‐response relationship, the experimental data set(s) used to fit the relationship, and the formula used for interspecies extrapolation. Alternative software platforms for implementing the method are considered, including Bayesian belief networks (BBNs) that facilitate assignment of prior probabilities, specification of relationships among model components, and identification of all output nodes on the probability tree. The method is demonstrated using the application of Evans, Sielken, and co‐workers for predicting cancer risk from formaldehyde inhalation exposure. Uncertainty distributions are derived for maximum likelihood estimate (MLE) and 95th percentile upper confidence limit (UCL) unit cancer risk estimates, and the effects of resolving selected model uncertainties on these distributions are demonstrated, considering both perfect and partial information for these model components. A method for synthesizing the results of multiple mechanistic studies is introduced, considering the assessed sensitivities and selectivities of the studies for their targeted effects. A highly simplified example is presented illustrating assessment of genotoxicity based on studies of DNA damage response caused by naphthalene and its metabolites. The approach can provide a formal mechanism for synthesizing multiple sources of information using a transparent and replicable weight‐of‐evidence procedure.  相似文献   

18.
A. Pielaat 《Risk analysis》2011,31(9):1434-1450
A novel purpose of the use of mathematical models in quantitative microbial risk assessment (QMRA) is to identify the sources of microbial contamination in a food chain (i.e., biotracing). In this article we propose a framework for the construction of a biotracing model, eventually to be used in industrial food production chains where discrete numbers of products are processed that may be contaminated by a multitude of sources. The framework consists of steps in which a Monte Carlo model, simulating sequential events in the chain following a modular process risk modeling (MPRM) approach, is converted to a Bayesian belief network (BBN). The resulting model provides a probabilistic quantification of concentrations of a pathogen throughout a production chain. A BBN allows for updating the parameters of the model based on observational data, and global parameter sensitivity analysis is readily performed in a BBN. Moreover, a BBN enables “backward reasoning” when downstream data are available and is therefore a natural framework for answering biotracing questions. The proposed framework is illustrated with a biotracing model of Salmonella in the pork slaughter chain, based on a recently published Monte Carlo simulation model. This model, implemented as a BBN, describes the dynamics of Salmonella in a Dutch slaughterhouse and enables finding the source of contamination of specific carcasses at the end of the chain.  相似文献   

19.
The incorporation of the human element into a probabilistic risk-based model is one that requires a possibilistic integration of appropriate techniques and/or that of vital inputs of linguistic nature. While fuzzy logic is an excellent tool for such integration, it tends not to cross its boundaries of possibility theory, except via an evidential reasoning supposition. Therefore, a fuzzy-Bayesian network (FBN) is proposed to enable a bridge to be made into a probabilistic setting of the domain. This bridge is formalized by way of the mass assignment theory. A framework is also proposed for its use in maritime safety assessment. Its implementation has been demonstrated in a maritime human performance case study that utilizes performance-shaping factors as the input variables of this groundbreaking FBN risk model.  相似文献   

20.
Bayesian Monte Carlo (BMC) decision analysis adopts a sampling procedure to estimate likelihoods and distributions of outcomes, and then uses that information to calculate the expected performance of alternative strategies, the value of information, and the value of including uncertainty. These decision analysis outputs are therefore subject to sample error. The standard error of each estimate and its bias, if any, can be estimated by the bootstrap procedure. The bootstrap operates by resampling (with replacement) from the original BMC sample, and redoing the decision analysis. Repeating this procedure yields a distribution of decision analysis outputs. The bootstrap approach to estimating the effect of sample error upon BMC analysis is illustrated with a simple value-of-information calculation along with an analysis of a proposed control structure for Lake Erie. The examples show that the outputs of BMC decision analysis can have high levels of sample error and bias.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号