首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most public health risk assessments assume and combine a series of average, conservative, and worst-case values to derive a conservative point estimate of risk. This procedure has major limitations. This paper demonstrates a new methodology for extended uncertainty analyses in public health risk assessments using Monte Carlo techniques. The extended method begins as do some conventional methods--with the preparation of a spreadsheet to estimate exposure and risk. This method, however, continues by modeling key inputs as random variables described by probability density functions (PDFs). Overall, the technique provides a quantitative way to estimate the probability distributions for exposure and health risks within the validity of the model used. As an example, this paper presents a simplified case study for children playing in soils contaminated with benzene and benzo(a)pyrene (BaP).  相似文献   

2.
This note presents parameterized distributions of estimates of the amount of soil ingested by children based on data collected by Binder et al. (1986). Following discussions with Dr. Binder, we modified the Binder study data by using the actual stool weights instead of the 15 g value used in the original study. After testing the data for lognormality, we generated parameterized distributions for use in risk assessment uncertainty analyses such as Monte Carlo simulations.  相似文献   

3.
4.
Uncertainty importance measures are quantitative tools aiming at identifying the contribution of uncertain inputs to output uncertainty. Their application ranges from food safety (Frey & Patil (2002)) to hurricane losses (Iman et al. (2005a, 2005b)). Results and indications an analyst derives depend on the method selected for the study. In this work, we investigate the assumptions at the basis of various indicator families to discuss the information they convey to the analyst/decisionmaker. We start with nonparametric techniques, and then present variance-based methods. By means of an example we show that output variance does not always reflect a decisionmaker state of knowledge of the inputs. We then examine the use of moment-independent approaches to global sensitivity analysis, i.e., techniques that look at the entire output distribution without a specific reference to its moments. Numerical results demonstrate that both moment-independent and variance-based indicators agree in identifying noninfluential parameters. However, differences in the ranking of the most relevant factors show that inputs that influence variance the most are not necessarily the ones that influence the output uncertainty distribution the most.  相似文献   

5.
Moment independent methods for the sensitivity analysis of model output are attracting growing attention among both academics and practitioners. However, the lack of benchmarks against which to compare numerical strategies forces one to rely on ad hoc experiments in estimating the sensitivity measures. This article introduces a methodology that allows one to obtain moment independent sensitivity measures analytically. We illustrate the procedure by implementing four test cases with different model structures and model input distributions. Numerical experiments are performed at increasing sample size to check convergence of the sensitivity estimates to the analytical values.  相似文献   

6.
Uncertainty Analysis in Multiplicative Models   总被引:3,自引:0,他引:3  
Wout Slob 《Risk analysis》1994,14(4):571-576
Uncertainties are usually evaluated by Monte Carlo analysis. However, multiplicative models with lognormal uncertainties, which are ubiquitous in risk assessments, allow for a simple and quick analytical uncertainty analysis. The necessary formulae are given, which may be evaluated by a desk calculator. Two examples illustrate the method.  相似文献   

7.
Probabilistic seismic risk analysis is a well‐established method in the insurance industry for modeling portfolio losses from earthquake events. In this context, precise exposure locations are often unknown. However, so far, location uncertainty has not been in the focus of a large amount of research. In this article, we propose a novel framework for treatment of location uncertainty. As a case study, a large number of synthetic portfolios resembling typical real‐world cases were created. We investigate the effect of portfolio characteristics such as value distribution, portfolio size, or proportion of risk items with unknown coordinates on the variability of loss frequency estimations. The results indicate that due to loss aggregation effects and spatial hazard variability, location uncertainty in isolation and in conjunction with ground motion uncertainty can induce significant variability to probabilistic loss results, especially for portfolios with a small number of risks. After quantifying its effect, we conclude that location uncertainty should not be neglected when assessing probabilistic seismic risk, but should be treated stochastically and the resulting variability should be visualized and interpreted carefully.  相似文献   

8.
This paper addresses the use of data for identifying and characterizing uncertainties in model parameters and predictions. The Bayesian Monte Carlo method is formally presented and elaborated, and applied to the analysis of the uncertainty in a predictive model for global mean sea level change. The method uses observations of output variables, made with an assumed error structure, to determine a posterior distribution of model outputs. This is used to derive a posterior distribution for the model parameters. Results demonstrate the resolution of the uncertainty that is obtained as a result of the Bayesian analysis and also indicate the key contributors to the uncertainty in the sea level rise model. While the technique is illustrated with a simple, preliminary model, the analysis provides an iterative framework for model refinement. The methodology developed in this paper provides a mechanism for the incorporation of ongoing data collection and research in decision-making for problems involving uncertain environmental change.  相似文献   

9.
A. E. Ades  G. Lu 《Risk analysis》2003,23(6):1165-1172
Monte Carlo simulation has become the accepted method for propagating parameter uncertainty through risk models. It is widely appreciated, however, that correlations between input variables must be taken into account if models are to deliver correct assessments of uncertainty in risk. Various two-stage methods have been proposed that first estimate a correlation structure and then generate Monte Carlo simulations, which incorporate this structure while leaving marginal distributions of parameters unchanged. Here we propose a one-stage alternative, in which the correlation structure is estimated from the data directly by Bayesian Markov Chain Monte Carlo methods. Samples from the posterior distribution of the outputs then correctly reflect the correlation between parameters, given the data and the model. Besides its computational simplicity, this approach utilizes the available evidence from a wide variety of structures, including incomplete data and correlated and uncorrelated repeat observations. The major advantage of a Bayesian approach is that, rather than assuming the correlation structure is fixed and known, it captures the joint uncertainty induced by the data in all parameters, including variances and covariances, and correctly propagates this through the decision or risk model. These features are illustrated with examples on emissions of dioxin congeners from solid waste incinerators.  相似文献   

10.
Variability arises due to differences in the value of a quantity among different members of a population. Uncertainty arises due to lack of knowledge regarding the true value of a quantity for a given member of a population. We describe and evaluate two methods for quantifying both variability and uncertainty. These methods, bootstrap simulation and a likelihood-based method, are applied to three datasets. The datasets include a synthetic sample of 19 values from a Lognormal distribution, a sample of nine values obtained from measurements of the PCB concentration in leafy produce, and a sample of five values for the partitioning of chromium in the flue gas desulfurization system of coal-fired power plants. For each of these datasets, we employ the two methods to characterize uncertainty in the arithmetic mean and standard deviation, cumulative distribution functions based upon fitted parametric distributions, the 95th percentile of variability, and the 63rd percentile of uncertainty for the 81st percentile of variability. The latter is intended to show that it is possible to describe any point within the uncertain frequency distribution by specifying an uncertainty percentile and a variability percentile. Using the bootstrap method, we compare results based upon use of the method of matching moments and the method of maximum likelihood for fitting distributions to data. Our results indicate that with only 5–19 data points as in the datasets we have evaluated, there is substantial uncertainty based upon random sampling error. Both the boostrap and likelihood-based approaches yield comparable uncertainty estimates in most cases.  相似文献   

11.
In risk analysis, the treatment of the epistemic uncertainty associated to the probability of occurrence of an event is fundamental. Traditionally, probabilistic distributions have been used to characterize the epistemic uncertainty due to imprecise knowledge of the parameters in risk models. On the other hand, it has been argued that in certain instances such uncertainty may be best accounted for by fuzzy or possibilistic distributions. This seems the case in particular for parameters for which the information available is scarce and of qualitative nature. In practice, it is to be expected that a risk model contains some parameters affected by uncertainties that may be best represented by probability distributions and some other parameters that may be more properly described in terms of fuzzy or possibilistic distributions. In this article, a hybrid method that jointly propagates probabilistic and possibilistic uncertainties is considered and compared with pure probabilistic and pure fuzzy methods for uncertainty propagation. The analyses are carried out on a case study concerning the uncertainties in the probabilities of occurrence of accident sequences in an event tree analysis of a nuclear power plant.  相似文献   

12.
期权定价的蒙特卡罗模拟综合性方差减少技术   总被引:6,自引:0,他引:6       下载免费PDF全文
主要将重要性抽样技术处理特殊衍生证券定价问题的能力与控制变量技术、分层抽样技术简单灵活、易于应用的特点有机地结合起来,把分层抽样技术和控制变量技术引入重要性抽样模拟估计的分析框架,提出更为有效的关于期权定价蒙特卡罗模拟的综合性方差减少技术;并以基于算术型亚式期权定价为例,进行了实证模拟分析.  相似文献   

13.
A wide range of uncertainties will be introduced inevitably during the process of performing a safety assessment of engineering systems. The impact of all these uncertainties must be addressed if the analysis is to serve as a tool in the decision-making process. Uncertainties present in the components (input parameters of model or basic events) of model output are propagated to quantify its impact in the final results. There are several methods available in the literature, namely, method of moments, discrete probability analysis, Monte Carlo simulation, fuzzy arithmetic, and Dempster-Shafer theory. All the methods are different in terms of characterizing at the component level and also in propagating to the system level. All these methods have different desirable and undesirable features, making them more or less useful in different situations. In the probabilistic framework, which is most widely used, probability distribution is used to characterize uncertainty. However, in situations in which one cannot specify (1) parameter values for input distributions, (2) precise probability distributions (shape), and (3) dependencies between input parameters, these methods have limitations and are found to be not effective. In order to address some of these limitations, the article presents uncertainty analysis in the context of level-1 probabilistic safety assessment (PSA) based on a probability bounds (PB) approach. PB analysis combines probability theory and interval arithmetic to produce probability boxes (p-boxes), structures that allow the comprehensive propagation through calculation in a rigorous way. A practical case study is also carried out with the developed code based on the PB approach and compared with the two-phase Monte Carlo simulation results.  相似文献   

14.
The most important input parameters in a complex probabilistic performance assessment are identified using a variance-based method and compared with those identified using a regression-based method. The variance-based method has the advantage of not requiring assumptions about the functional relationship between input and output parameters. However, it has the drawback of requiring heuristic assessments of threshold variance ratios above which a parameter is considered important, and it also requires numerous executions of the computer program, which may be computationally expensive. Both methods identified the same top 5 and 7 of the top 10 most important parameters for a system having 195 inputs. Although no distinct advantage for the variance-based approach was identified, the ideas which motivate the new approach are sound and suggest new avenues for exploring the relationships between the inputs and the output of a complex system.  相似文献   

15.
Interest in examining both the uncertainty and variability in environmental health risk assessments has led to increased use of methods for propagating uncertainty. While a variety of approaches have been described, the advent of both powerful personal computers and commercially available simulation software have led to increased use of Monte Carlo simulation. Although most analysts and regulators are encouraged by these developments, some are concerned that Monte Carlo analysis is being applied uncritically. The validity of any analysis is contingent on the validity of the inputs to the analysis. In the propagation of uncertainty or variability, it is essential that the statistical distribution of input variables are properly specified. Furthermore, any dependencies among the input variables must be considered in the analysis. In light of the potential difficulty in specifying dependencies among input variables, it is useful to consider whether there exist rules of thumb as to when correlations can be safely ignored (i.e., when little overall precision is gained by an additional effort to improve upon an estimation of correlation). We make use of well-known error propagation formulas to develop expressions intended to aid the analyst in situations wherein normally and lognormally distributed variables are linearly correlated.  相似文献   

16.
Treatment of Uncertainty in Performance Assessments for Complex Systems   总被引:13,自引:0,他引:13  
When viewed at a high level, performance assessments (PAs) for complex systems involve two types of uncertainty: stochastic uncertainty, which arises because the system under study can behave in many different ways, and subjective uncertainty, which arises from a lack of knowledge about quantities required within the computational implementation of the PA. Stochastic uncertainty is typically incorporated into a PA with an experimental design based on importance sampling and leads to the final results of the PA being expressed as a complementary cumulative distribution function (CCDF). Subjective uncertainty is usually treated with Monte Carlo techniques and leads to a distribution of CCDFs. This presentation discusses the use of the Kaplan/Garrick ordered triple representation for risk in maintaining a distinction between stochastic and subjective uncertainty in PAs for complex systems. The topics discussed include (1) the definition of scenarios and the calculation of scenario probabilities and consequences, (2) the separation of subjective and stochastic uncertainties, (3) the construction of CCDFs required in comparisons with regulatory standards (e.g., 40 CFR Part 191, Subpart B for the disposal of radioactive waste), and (4) the performance of uncertainty and sensitivity studies. Results obtained in a preliminary PA for the Waste Isolation Pilot Plant, an uncertainty and sensitivity analysis of the MACCS reactor accident consequence analysis model, and the NUREG-1150 probabilistic risk assessments are used for illustration.  相似文献   

17.
The application of an ISO standard procedure (Guide to the Expression of Uncertainty in Measurement (GUM)) is here discussed to quantify uncertainty in human risk estimation under chronic exposure to hazardous chemical compounds. The procedure was previously applied to a simple model; in this article a much more complex model is used, i.e., multiple compound and multiple exposure pathways. Risk was evaluated using the usual methodologies: the deterministic reasonable maximum exposure (RME) and the statistical Monte Carlo method. In both cases, the procedures to evaluate uncertainty on risk values are detailed. Uncertainties were evaluated by different methodologies to account for the peculiarity of information about the single variable. The GUM procedure enables the ranking of variables by their contribution to uncertainty; it provides a criterion for choosing variables for deeper analysis. The obtained results show that the application of GUM procedure is easy and straightforward to quantify uncertainty and variability of risk estimation. Health risk estimation is based on literature data on a water table contaminated by three volatile organic compounds. Daily intake was considered by either ingestion of water or inhalation during showering. The results indicate one of the substances as the main contaminant, and give a criterion to identify the key component on which the treatment selection may be performed and the treatment process may be designed in order to reduce risk.  相似文献   

18.
System unavailabilities for large complex systems such as nuclear power plants are often evaluated through use of fault tree analysis. The system unavailability is obtained from a Boolean representation of a system fault tree. Even after truncation of higher order terms these expressions can be quite large, involving thousands of terms. A general matrix notation is proposed for the representation of Boolean expressions which facilitates uncertainty and sensitivity analysis calculations.  相似文献   

19.
Safety systems are important components of high-consequence systems that are intended to prevent the unintended operation of the system and thus the potentially significant negative consequences that could result from such an operation. This presentation investigates and illustrates formal procedures for assessing the uncertainty in the probability that a safety system will fail to operate as intended in an accident environment. Probability theory and evidence theory are introduced as possible mathematical structures for the representation of the epistemic uncertainty associated with the performance of safety systems, and a representation of this type is illustrated with a hypothetical safety system involving one weak link and one strong link that is exposed to a high temperature fire environment. Topics considered include (1) the nature of diffuse uncertainty information involving a system and its environment, (2) the conversion of diffuse uncertainty information into the mathematical structures associated with probability theory and evidence theory, and (3) the propagation of these uncertainty structures through a model for a safety system to obtain representations in the context of probability theory and evidence theory of the uncertainty in the probability that the safety system will fail to operate as intended. The results suggest that evidence theory provides a potentially valuable representational tool for the display of the implications of significant epistemic uncertainty in inputs to complex analyses.  相似文献   

20.
The error estimate of Borgonovo's moment‐independent index is considered, and it shows that the possible computational complexity of is mainly due to the probability density function (PDF) estimate because the PDF estimate is an ill‐posed problem and its convergence rate is quite slow. So it reminds us to compute Borgonovo's index using other methods. To avoid the PDF estimate, , which is based on the PDF, is first approximatively represented by the cumulative distribution function (CDF). The CDF estimate is well posed and its convergence rate is always faster than that of the PDF estimate. From the representation, a stable approach is proposed to compute with an adaptive procedure. Since the small probability multidimensional integral needs to be computed in this procedure, a computational strategy named asymptotic space integration is introduced to reduce a high‐dimensional integral to a one‐dimensional integral. Then we can compute the small probability multidimensional integral by adaptive numerical integration in one dimension with an improved convergence rate. From the comparison of numerical error analysis of some examples, it can be shown that the proposed method is an effective approach to uncertainty importance measure computation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号