首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Risk analysis》2018,38(6):1128-1142
Lumber Liquidators (LL) Chinese‐manufactured laminate flooring (CLF) has been installed in >400,000 U.S. homes over the last decade. To characterize potential associated formaldehyde exposures and cancer risks, chamber emissions data were collected from 399 new LL CLF, and from LL CLF installed in 899 homes in which measured aggregate indoor formaldehyde concentrations exceeded 100 μg/m3 from a total of 17,867 homes screened. Data from both sources were combined to characterize LL CLF flooring‐associated formaldehyde emissions from new boards and installed boards. New flooring had an average (±SD ) emission rate of 61.3 ± 52.1 μg/m2‐hour; >one‐year installed boards had ∼threefold lower emission rates. Estimated emission rates for the 899 homes and corresponding data from questionnaires were used as inputs to a single‐compartment, steady‐state mass‐balance model to estimate corresponding residence‐specific TWA formaldehyde concentrations and potential resident exposures. Only ∼0.7% of those homes had estimated acute formaldehyde concentrations >100 μg/m3 immediately after LL CLF installation. The TWA daily formaldehyde inhalation exposure within the 899 homes was estimated to be 17 μg/day using California Proposition 65 default methods to extrapolate cancer risk (below the regulation “no significant risk level” of 40 μg/day). Using a U.S. Environmental Protection Agency linear cancer risk model, 50th and 95th percentile values of expected lifetime cancer risk for residents of these homes were estimated to be 0.33 and 1.2 per 100,000 exposed, respectively. Based on more recent data and verified nonlinear cancer risk assessment models, LL CLF formaldehyde emissions pose virtually no cancer risk to affected consumers.  相似文献   

2.
Lack of data on daily inhalation rate and activity of children has been an issue in health risk assessment of air pollutants. This study aimed to obtain the daily inhalation rate and intensity and frequency of physical activity in relation to the environment in Japanese preschool children. Children aged four–six years (n= 138) in the suburbs of Tokyo participated in this study, which involved three days' continuous monitoring of physical activity using a tri‐axial accelerometer and parent's completion of a time/location diary during daily life. The estimated three‐day mean daily inhalation rate (body temperature, pressure, saturated with water vapor) was 9.9 ± 1.6 m3/day (0.52 ± 0.09 m3/kg/day). The current daily inhalation rate value of 0.580 m3/kg/day proposed for use in health risk assessment in Japan is confirmed to be valid to calculate central value of inhaled dose of air pollutants in five‐ to six‐year‐old children. However, the 95th percentile daily inhalation rate of 0.83 m3/kg/day based on measurement for five‐year‐old children is recommended to be used to provide an upper bound estimate of exposure that ensure the protection of all five‐ to six‐year‐old children from the health risk of air pollutants. Children spent the majority of their time in sedentary and light level of physical activity (LPA) when indoors, while 85% of their time when outdoors was spent in LPA and moderate‐to‐vigorous physical activity. The results suggest the need to consider variability of minute respiratory ventilation rate according to the environment for more refined short‐term health risk assessment.  相似文献   

3.
Linear, no-threshold relationships are typically reported for time series studies of air pollution and mortality. Since regulatory standards and economic valuations typically assume some threshold level, we evaluated the fundamental question of the impact of exposure misclassification on the persistence of underlying personal-level thresholds when personal data are aggregated to the population level in the assessment of exposure-response relationships. As an example, we measured personal exposures to two particle metrics, PM2.5 and sulfate (SO4(2-)), for a sample of lung disease patients and compared these with exposures estimated from ambient measurements Previous work has shown that ambient:personal correlations for PM2.5 are much lower than for SO4(2-), suggesting that ambient PM2.5 measurements misclassify exposures to PM2.5. We then developed a method by which the measured:estimated exposure relationships for these patients were used to simulate personal exposures for a larger population and then to estimate individual-level mortality risks under different threshold assumptions. These individual risks were combined to obtain the population risk of death, thereby exhibiting the prominence (and the value) of the threshold in the relationship between risk and estimated exposure. Our results indicated that for poorly classified exposures (PM2.5 in this example) population-level thresholds were apparent at lower ambient concentrations than specified common personal thresholds, while for well-classified exposures (e.g., SO4(2-)), the apparent thresholds were similar to these underlying personal thresholds. These results demonstrate that surrogate metrics that are not highly correlated with personal exposures obscure the presence of thresholds in epidemiological studies of larger populations, while exposure indicators that are highly correlated with personal exposures can accurately reflect underlying personal thresholds.  相似文献   

4.
5.
A population's long-term exposure distribution for a specified compound is typically estimated from short-term measurements of a sample of individuals from the population of interest. In this situation, estimates of a population's long-term exposure parameters contain two sources of sampling error: the typical sampling error associated with taking a sample from the population and the sampling error from estimating individual long-term exposure. These components are not separable in the data collected, i.e. , the value observed is due partly to the individual sampled and partly to the time at which the individual was sampled. Hence, the distribution of the data collected is not the same as the population exposure distribution. Monte Carlo simulations are used to compare the distribution of the observed data with the population exposure distribution for a simple additive model. A simple adjustment to standard estimates of percentiles and quantils is shown to be effective in reducing bias particularly for the upper percentiles and quantils of the population distribution.  相似文献   

6.
The objective of this article was to propose an exposure assessment model to describe the relationship between fish consumption and body methyl mercury (MeHg) levels in the Japanese population. Individual MeHg intake was estimated by the summation of species-specific fish consumption multiplied by species-specific fish MeHg levels. The distribution of fish consumed by individuals and the MeHg level in each fish species were assigned based on published data from Japanese government institutions. The probability of MeHg intake for a population was accomplished through a Monte Carlo simulation by the random sampling of fish consumption and species-specific MeHg levels. Internal body MeHg levels in blood and hair were estimated using a one-compartment model. Overall, the mean value of MeHg intake for the Japanese population was estimated to be 6.76 μg/day or 0.14 μg/kg body weight per day (bw/day), while the mean value for the hair mercury level was 2.02 μg/g. Compared with the survey data that tabulated hair mercury levels in a cross-section of the Japanese population, the simulation results matched the hair mercury survey data very well for women, but somewhat underestimated for men and all of the population. This exposure assessment model is a useful attempt at further risk assessment with respect to a risk-benefit analysis.  相似文献   

7.
Risk Characterization of Methyl tertiary Butyl Ether (MTBE) in Tap Water   总被引:1,自引:0,他引:1  
Methyl tertiary butyl ether (MTBE) can enter surface water and groundwater through wet atmospheric deposition or as a result of fuel leaks and spills. About 30% of the U.S. population lives in areas where MTBE is in regular use. Ninety-five percent of this population is unlikely to be exposed to MTBE in tap water at concentrations exceeding 2 ppb, and most will be exposed to concentrations that are much lower and may be zero. About 5% of this population may be exposed to higher levels of MTBE in tap water, resulting from fuel tank leaks and spills into surface or groundwater used for potable water supplies. This paper describes the concentration ranges found and anticipated in surface and groundwater, and estimates the distribution of doses experienced by humans using water containing MTBE to drink, prepare food, and shower/bathe. The toxic properties (including potency) of MTBE when ingested, inhaled, and in contact with the skin are summarized. Using a range of human toxic potency values derived from animal studies, margins of exposure (MOE) associated with alternative chronic exposure scenarios are estimated to range from 1700 to 140,000. Maximum concentrations of MTBE in tap water anticipated not to cause adverse health effects are determined to range from 700 to 14,000 ppb. The results of this analysis demonstrate that no health risks are likely to be associated with chronic and subchronic human exposures to MTBE in tap water. Although some individuals may be exposed to very high concentrations of MTBE in tap water immediately following a localized spill, these exposures are likely to be brief in duration due to large-scale dilution and rapid volatilization of MTBE, the institution of emergency response and remediation measures to minimize human exposures, and the low taste and odor thresholds of MTBE which ensure that its presence in tap water is readily detected at concentrations well below the threshold for human injury.  相似文献   

8.
According to E.U. regulations, the maximum allowable rate of adventitious transgene presence in non‐genetically modified (GM) crops is 0.9%. We compared four sampling methods for the detection of transgenic material in agricultural non‐GM maize fields: random sampling, stratified sampling, random sampling + ratio reweighting, random sampling + regression reweighting. Random sampling involves simply sampling maize grains from different locations selected at random from the field concerned. The stratified and reweighting sampling methods make use of an auxiliary variable corresponding to the output of a gene‐flow model (a zero‐inflated Poisson model) simulating cross‐pollination as a function of wind speed, wind direction, and distance to the closest GM maize field. With the stratified sampling method, an auxiliary variable is used to define several strata with contrasting transgene presence rates, and grains are then sampled at random from each stratum. With the two methods involving reweighting, grains are first sampled at random from various locations within the field, and the observations are then reweighted according to the auxiliary variable. Data collected from three maize fields were used to compare the four sampling methods, and the results were used to determine the extent to which transgene presence rate estimation was improved by the use of stratified and reweighting sampling methods. We found that transgene rate estimates were more accurate and that substantially smaller samples could be used with sampling strategies based on an auxiliary variable derived from a gene‐flow model.  相似文献   

9.
Risks associated with toxicants in food are often controlled by exposure reduction. When exposure recommendations are developed for foods with both harmful and beneficial qualities, however, they must balance the associated risks and benefits to maximize public health. Although quantitative methods are commonly used to evaluate health risks, such methods have not been generally applied to evaluating the health benefits associated with environmental exposures. A quantitative method for risk-benefit analysis is presented that allows for consideration of diverse health endpoints that differ in their impact (i.e., duration and severity) using dose-response modeling weighted by quality-adjusted life years saved. To demonstrate the usefulness of this method, the risks and benefits of fish consumption are evaluated using a single health risk and health benefit endpoint. Benefits are defined as the decrease in myocardial infarction mortality resulting from fish consumption, and risks are defined as the increase in neurodevelopmental delay (i.e., talking) resulting from prenatal methylmercury exposure. Fish consumption rates are based on information from Washington State. Using the proposed framework, the net health impact of eating fish is estimated in either a whole population or a population consisting of women of childbearing age and their children. It is demonstrated that across a range of fish methylmercury concentrations (0-1 ppm) and intake levels (0-25 g/day), individuals would have to weight the neurodevelopmental effects 6 times more (in the whole population) or 250 times less (among women of child-bearing age and their children) than the myocardial infarction benefits in order to be ambivalent about whether or not to consume fish. These methods can be generalized to evaluate the merits of other public health and risk management programs that involve trade-offs between risks and benefits.  相似文献   

10.
Indirect exposures to 2,3,7,8-tetrachlorodibenzo- p -dioxin (TCDD) and other toxic materials released in incinerator emissions have been identified as a significant concern for human health. As a result, regulatory agencies and researchers have developed specific approaches for evaluating exposures from indirect pathways. This paper presents a quantitative assessment of the effect of uncertainty and variation in exposure parameters on the resulting estimates of TCDD dose rates received by individuals indirectly exposed to incinerator emissions through the consumption of home-grown beef. The assessment uses a nested Monte Carlo model that separately characterizes uncertainty and variation in dose rate estimates. Uncertainty resulting from limited data on the fate and transport of TCDD are evaluated, and variations in estimated dose rates in the exposed population that result from location-specific parameters and individuals'behaviors are characterized. The analysis indicates that lifetime average daily dose rates for individuals living within 10 km of a hypothetical incinerator range over three orders of magnitude. In contrast, the uncertainty in the dose rate distribution appears to vary by less than one order of magnitude, based on the sources of uncertainty included in this analysis. Current guidance for predicting exposures from indirect exposure pathways was found to overestimate the intakes for typical and high-end individuals.  相似文献   

11.
Quantitative risk assessment often begins with an estimate of the exposure or dose associated with a particular risk level from which exposure levels posing low risk to populations can be extrapolated. For continuous exposures, this value, the benchmark dose, is often defined by a specified increase (or decrease) from the median or mean response at no exposure. This method of calculating the benchmark dose does not take into account the response distribution and, consequently, cannot be interpreted based upon probability statements of the target population. We investigate quantile regression as an alternative to the use of the median or mean regression. By defining the dose–response quantile relationship and an impairment threshold, we specify a benchmark dose as the dose associated with a specified probability that the population will have a response equal to or more extreme than the specified impairment threshold. In addition, in an effort to minimize model uncertainty, we use Bayesian monotonic semiparametric regression to define the exposure–response quantile relationship, which gives the model flexibility to estimate the quantal dose–response function. We describe this methodology and apply it to both epidemiology and toxicology data.  相似文献   

12.
S. E. Holm 《Risk analysis》2013,33(1):161-176
The potential for fiber exposure during historical use of chrysotile‐containing joint compounds (JCC) has been documented, but the published data are of limited use for reconstructing exposures and assessing worker risk. Consequently, fiber concentration distributions for workers sanding JCC were independently derived by applying a recently developed model based on published dust measurements from sanding modern‐day (asbestos‐free) joint compound and compared to fiber concentration distributions based on limited historical measurements. This new procedure relies on factors that account for (i) differences in emission rates between modern‐day and JCC and (ii) the number of fibers (quantified by phase contrast microscopy [PCM]) per mass of dust generated by sanding JCC, as determined in a bench‐scale chamber study using a recreated JCC, that convert respirable dust concentrations to fiber concentrations. Airborne respirable PCM‐fiber concentration medians (and 95% confidence intervals) derived for output variables using the new procedure were 0.26 (0.039, 1.7) f/cm3 and 0.078 (0.013, 0.47) f/cm3, and corresponding total fiber concentrations were 1.2 (0.17, 9.2) f/cm3 and 0.37 (0.056, 2.5) f/cm3, in enclosed and nonenclosed environments, respectively. Corresponding estimates of respirable and total PCM fiber concentrations measured historically during sanding of asbestos‐containing joint compound—adjusted for differences between peak and time‐weighted average (TWA) concentrations and documented analytical preparation and sampling artifacts—were 0.15 (0.019, 0.95) f/cm3 and 0.86 (0.11, 5.4) f/cm3, respectively. The PCM‐fiber concentration distributions estimated using the new procedure bound the distribution estimated from adjusted TWA historical fiber measurements, suggesting reasonable consistency of these estimates taking into account uncertainties addressed in this study.  相似文献   

13.
A method for estimating long-term distributions of exposure based on repeated short-term measurements within the same population is developed. If the short-term measurements span seasonal variation, and if the distributions are log-normal or nearly so, then long-term distributions can be estimated from as few as two visits to the same population. The method is illustrated using examples drawn from EPA's TEAM Study of exposures to volatile organic compounds.  相似文献   

14.
Health Risk Assessment of a Modern Municipal Waste Incinerator   总被引:2,自引:0,他引:2  
During the modernization of the municipal waste incinerator (MWI, maximum capacity of 180,000 tons per year) of Metropolitan Grenoble (405,000 inhabitants), in France, a risk assessment was conducted, based on four tracer pollutants: two volatile organic compounds (benzene and 1, 1, 1 trichloroethane) and two heavy metals (nickel and cadmium, measured in particles). A Gaussian plume dispersion model, applied to maximum emissions measured at the MWI stacks, was used to estimate the distribution of these pollutants in the atmosphere throughout the metropolitan area. A random sample telephone survey (570 subjects) gathered data on time-activity patterns, according to demographic characteristics of the population. Life-long exposure was assessed as a time-weighted average of ambient air concentrations. Inhalation alone was considered because, in the Grenoble urban setting, other routes of exposure are not likely. A Monte Carlo simulation was used to describe probability distributions of exposures and risks. The median of the life-long personal exposures distribution to MWI benzene was 3.2·10–5 g/m3 (20th and 80th percentiles = 1.5·10–5 and 6.5·10–5 g/m3), yielding a 2.6·10–10 carcinogenic risk (1.2·10–10–5.4·10–10). For nickel, the corresponding life-time exposure and cancer risk were 1.8·10–4 g/m3 (0.9.10–4 – 3.6·10–4 g/m3) and 8.6·10–8 (4.3·10–8–17.3·10–8); for cadmium they were respectively 8.3·10–6 g/m3 (4.0·10–6–17.6·10–6) and 1.5·10–8 (7.2·10–9–3.1·10–8). Inhalation exposure to cadmium emitted by the MWI represented less than 1% of the WHO Air Quality Guideline (5 ng/m3), while there was a margin of exposure of more than 109 between the NOAEL (150 ppm) and exposure estimates to trichloroethane. Neither dioxins nor mercury, a volatile metal, were measured. This could lessen the attributable life-long risks estimated. The minute (VOCs and cadmium) to moderate (nickel) exposure and risk estimates are in accord with other studies on modern MWIs meeting recent emission regulations, however.  相似文献   

15.
《Risk analysis》2018,38(7):1474-1489
Complex statistical models fitted to data from studies of atomic bomb survivors are used to estimate the human health effects of ionizing radiation exposures. We describe and illustrate an approach to estimate population risks from ionizing radiation exposure that relaxes many assumptions about radiation‐related mortality. The approach draws on developments in methods for causal inference. The results offer a different way to quantify radiation's effects and show that conventional estimates of the population burden of excess cancer at high radiation doses are driven strongly by projecting outside the range of current data. Summary results obtained using the proposed approach are similar in magnitude to those obtained using conventional methods, although estimates of radiation‐related excess cancers differ for many age, sex, and dose groups. At low doses relevant to typical exposures, the strength of evidence in data is surprisingly weak. Statements regarding human health effects at low doses rely strongly on the use of modeling assumptions.  相似文献   

16.
To date, the variant Creutzfeldt‐Jakob disease (vCJD) risk assessments that have been performed have primarily focused on predicting future vCJD cases in the United Kingdom, which underwent a bovine spongiform encephalopathy (BSE) epidemic between 1980 and 1996. Surveillance of potential BSE cases was also used to assess vCJD risk, especially in other BSE‐prevalent EU countries. However, little is known about the vCJD risk for uninfected individuals who accidentally consume BSE‐contaminated meat products in or imported from a country with prevalent BSE. In this article, taking into account the biological mechanism of abnormal prion PrPres aggregation in the brain, the probability of exposure, and the expected amount of ingested infectivity, we establish a stochastic mean exponential growth model of lifetime exposure through dietary intake. Given the findings that BSE agents behave similarly in humans and macaques, we obtained parameter estimates from experimental macaque data. We then estimated the accumulation of abnormal prions to assess lifetime risk of developing clinical signs of vCJD. Based on the observed number of vCJD cases and the estimated number of exposed individuals during the BSE epidemic period from 1980 to 1996 in the United Kingdom, an exposure threshold hypothesis is proposed. Given the age‐specific risk of infection, the hypothesis explains the observations very well from an extreme‐value distribution fitting of the estimated BSE infectivity exposure. The current BSE statistics in the United Kingdom are provided as an example.  相似文献   

17.
U.S. Environment Protection Agency benchmark doses for dichotomous cancer responses are often estimated using a multistage model based on a monotonic dose‐response assumption. To account for model uncertainty in the estimation process, several model averaging methods have been proposed for risk assessment. In this article, we extend the usual parameter space in the multistage model for monotonicity to allow for the possibility of a hormetic dose‐response relationship. Bayesian model averaging is used to estimate the benchmark dose and to provide posterior probabilities for monotonicity versus hormesis. Simulation studies show that the newly proposed method provides robust point and interval estimation of a benchmark dose in the presence or absence of hormesis. We also apply the method to two data sets on carcinogenic response of rats to 2,3,7,8‐tetrachlorodibenzo‐p‐dioxin.  相似文献   

18.
Sanding joint compounds is a dusty activity and exposures are not well characterized. Until the mid 1970s, asbestos‐containing joint compounds were used by some people such that sanding could emit dust and asbestos fibers. We estimated the distribution of 8‐h TWA concentrations and cumulative exposures to respirable dusts and chrysotile asbestos fibers for four worker groups: (1) drywall specialists, (2) generalists, (3) tradespersons who are bystanders to drywall finishing, and (4) do‐it‐yourselfers (DIYers). Data collected through a survey of experienced contractors, direct field observations, and literature were used to develop prototypical exposure scenarios for each worker group. To these exposure scenarios, we applied a previously developed semi‐empirical mathematical model that predicts area as well as personal breathing zone respirable dust concentrations. An empirical factor was used to estimate chrysotile fiber concentrations from respirable dust concentrations. On a task basis, we found mean 8‐h TWA concentrations of respirable dust and chrysotile fibers are numerically highest for specialists, followed by generalists, DIYers, and bystander tradespersons; these concentrations are estimated to be in excess of the respective current but not historical Threshold Limit Values. Due to differences in frequency of activities, annual cumulative exposures are highest for specialists, followed by generalists, bystander tradespersons, and DIYers. Cumulative exposure estimates for chrysotile fibers from drywall finishing are expected to result in few, if any, mesothelioma or excess lung cancer deaths according to recently published risk assessments. Given the dustiness of drywall finishing, we recommend diligence in the use of readily available source controls.  相似文献   

19.
This study explored how individuals in Taiwan perceive the risk of earthquake and the relationship of past earthquake experience and gender to risk perception. Participants (n= 1,405), including earthquake survivors and those in the general population without prior direct earthquake exposure, were selected and interviewed through a computer‐assisted telephone interviewing procedure using a random sampling and stratification method covering all 24 regions of Taiwan. A factor analysis of the interview data yielded a two‐factor structure of risk perception in regard to earthquake. The first factor, “personal impact,” encompassed perception of threat and fear related to earthquakes. The second factor, “controllability,” encompassed a sense of efficacy of self‐protection in regard to earthquakes. The findings indicated prior earthquake survivors and females reported higher scores on the personal impact factor than males and those with no prior direct earthquake experience, although there were no group differences on the controllability factor. The findings support that risk perception has multiple components, and suggest that past experience (survivor status) and gender (female) affect the perception of risk. Exploration of potential contributions of other demographic factors such as age, education, and marital status to personal impact, especially for females and survivors, is discussed. Future research on and intervention program with regard to risk perception are suggested accordingly.  相似文献   

20.
This paper proposes a new framework for determining whether a given relationship is nonlinear, what the nonlinearity looks like, and whether it is adequately described by a particular parametric model. The paper studies a regression or forecasting model of the form yt=μ( x t)+εt where the functional form of μ(⋅) is unknown. We propose viewing μ(⋅) itself as the outcome of a random process. The paper introduces a new stationary random field m(⋅) that generalizes finite‐differenced Brownian motion to a vector field and whose realizations could represent a broad class of possible forms for μ(⋅). We view the parameters that characterize the relation between a given realization of m(⋅) and the particular value of μ(⋅) for a given sample as population parameters to be estimated by maximum likelihood or Bayesian methods. We show that the resulting inference about the functional relation also yields consistent estimates for a broad class of deterministic functions μ(⋅). The paper further develops a new test of the null hypothesis of linearity based on the Lagrange multiplier principle and small‐sample confidence intervals based on numerical Bayesian methods. An empirical application suggests that properly accounting for the nonlinearity of the inflation‐unemployment trade‐off may explain the previously reported uneven empirical success of the Phillips Curve.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号