首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract. Non‐parametric regression models have been studied well including estimating the conditional mean function, the conditional variance function and the distribution function of errors. In addition, empirical likelihood methods have been proposed to construct confidence intervals for the conditional mean and variance. Motivated by applications in risk management, we propose an empirical likelihood method for constructing a confidence interval for the pth conditional value‐at‐risk based on the non‐parametric regression model. A simulation study shows the advantages of the proposed method.  相似文献   

2.
On the basis of the idea of the Nadaraya–Watson (NW) kernel smoother and the technique of the local linear (LL) smoother, we construct the NW and LL estimators of conditional mean functions and their derivatives for a left‐truncated and right‐censored model. The target function includes the regression function, the conditional moment and the conditional distribution function as special cases. It is assumed that the lifetime observations with covariates form a stationary α‐mixing sequence. Asymptotic normality of the estimators is established. Finite sample behaviour of the estimators is investigated via simulations. A real data illustration is included too.  相似文献   

3.
Expected shortfall (ES) is a well-known measure of extreme loss associated with a risky asset or portfolio. For any 0 < p < 1, the 100(1 ? p) percent ES is defined as the mean of the conditional loss distribution, given the event that the loss exceeds (1 ? p)th quantile of the marginal loss distribution. Estimation of ES based on asset return data is an important problem in finance. Several nonparametric estimators of the expected shortfall are available in the literature. Using Monte Carlo simulations, we compare the accuracy of these estimators under the condition that p → 0 as n → ∞ for several asset return time series models, where n is the sample size. Not much seems to be known regarding the properties of the ES estimators under this condition. For p close to zero, the ES measures an extreme loss in the right tail of the loss distribution of the asset or portfolio. Our simulations and real-data analysis provide insight into the effect of varying p with n on the performance of nonparametric ES estimators.  相似文献   

4.
Abstract. A non‐parametric rank‐based test of exchangeability for bivariate extreme‐value copulas is first proposed. The two key ingredients of the suggested approach are the non‐parametric rank‐based estimators of the Pickands dependence function recently studied by Genest and Segers, and a multiplier technique for obtaining approximate p‐values for the derived statistics. The proposed approach is then extended to left‐tail decreasing dependence structures that are not necessarily extreme‐value copulas. Large‐scale Monte Carlo experiments are used to investigate the level and power of the various versions of the test and show that the proposed procedure can be substantially more powerful than tests of exchangeability derived directly from the empirical copula. The approach is illustrated on well‐known financial data.  相似文献   

5.
The generalized method of moments (GMM) and empirical likelihood (EL) are popular methods for combining sample and auxiliary information. These methods are used in very diverse fields of research, where competing theories often suggest variables satisfying different moment conditions. Results in the literature have shown that the efficient‐GMM (GMME) and maximum empirical likelihood (MEL) estimators have the same asymptotic distribution to order n?1/2 and that both estimators are asymptotically semiparametric efficient. In this paper, we demonstrate that when data are missing at random from the sample, the utilization of some well‐known missing‐data handling approaches proposed in the literature can yield GMME and MEL estimators with nonidentical properties; in particular, it is shown that the GMME estimator is semiparametric efficient under all the missing‐data handling approaches considered but that the MEL estimator is not always efficient. A thorough examination of the reason for the nonequivalence of the two estimators is presented. A particularly strong feature of our analysis is that we do not assume smoothness in the underlying moment conditions. Our results are thus relevant to situations involving nonsmooth estimating functions, including quantile and rank regressions, robust estimation, the estimation of receiver operating characteristic (ROC) curves, and so on.  相似文献   

6.
We propose a new method for risk‐analytic benchmark dose (BMD) estimation in a dose‐response setting when the responses are measured on a continuous scale. For each dose level d, the observation X(d) is assumed to follow a normal distribution: . No specific parametric form is imposed upon the mean μ(d), however. Instead, nonparametric maximum likelihood estimates of μ(d) and σ are obtained under a monotonicity constraint on μ(d). For purposes of quantitative risk assessment, a ‘hybrid’ form of risk function is defined for any dose d as R(d) = P[X(d) < c], where c > 0 is a constant independent of d. The BMD is then determined by inverting the additional risk functionRA(d) = R(d) ? R(0) at some specified value of benchmark response. Asymptotic theory for the point estimators is derived, and a finite‐sample study is conducted, using both real and simulated data. When a large number of doses are available, we propose an adaptive grouping method for estimating the BMD, which is shown to have optimal mean integrated squared error under appropriate designs.  相似文献   

7.
Estimation of the Pareto tail index from extreme order statistics is an important problem in many settings. The upper tail of the distribution, where data are sparse, is typically fitted with a model, such as the Pareto model, from which quantities such as probabilities associated with extreme events are deduced. The success of this procedure relies heavily not only on the choice of the estimator for the Pareto tail index but also on the procedure used to determine the number k of extreme order statistics that are used for the estimation. The authors develop a robust prediction error criterion for choosing k and estimating the Pareto index. A Monte Carlo study shows the good performance of the new estimator and the analysis of real data sets illustrates that a robust procedure for selection, and not just for estimation, is needed.  相似文献   

8.
ABSTRACT

When a distribution function is in the max domain of attraction of an extreme value distribution, its tail can be well approximated by a generalized Pareto distribution. Based on this fact we use a moment estimation idea to propose an adapted maximum likelihood estimator for the extreme value index, which can be understood as a combination of the maximum likelihood estimation and moment estimation. Under certain regularity conditions, we derive the asymptotic normality of the new estimator and investigate its finite sample behavior by comparing with several classical or competitive estimators. A simulation study shows that the new estimator is competitive with other estimators in view of average bias, average MSE, and coefficient of variance of the new device for the optimal selection of the threshold.  相似文献   

9.
In this article, we use the peaks over random threshold (PORT)-methodology, and consider Hill and moment PORT-classes of extreme value index estimators. These classes of estimators are invariant not only to changes in scale, like the classical Hill and moment estimators, but also to changes in location. They are based on the sample of excesses over a random threshold, the order statistic X [np]+1:n , 0 ≤ p < 1, being p a tuning parameter, which makes them highly flexible. Under convenient restrictions on the underlying model, these classes of estimators are consistent and asymptotically normal for adequate values of k, the number of top order statistics used in the semi-parametric estimation of the extreme value index γ. In practice, there may however appear a stability around a value distant from the target γ when the minimum is chosen for the random threshold, and attention is drawn for the danger of transforming the original data through the subtraction of the minimum. A new bias-corrected moment estimator is also introduced. The exact performance of the new extreme value index PORT-estimators is compared, through a large-scale Monte-Carlo simulation study, with the original Hill and moment estimators, the bias-corrected moment estimator, and one of the minimum-variance reduced-bias (MVRB) extreme value index estimators recently introduced in the literature. As an empirical example we estimate the tail index associated to a set of real data from the field of finance.  相似文献   

10.
ABSTRACT

ARMA–GARCH models are widely used to model the conditional mean and conditional variance dynamics of returns on risky assets. Empirical results suggest heavy-tailed innovations with positive extreme value index for these models. Hence, one may use extreme value theory to estimate extreme quantiles of residuals. Using weak convergence of the weighted sequential tail empirical process of the residuals, we derive the limiting distribution of extreme conditional Value-at-Risk (CVaR) and conditional expected shortfall (CES) estimates for a wide range of extreme value index estimators. To construct confidence intervals, we propose to use self-normalization. This leads to improved coverage vis-à-vis the normal approximation, while delivering slightly wider confidence intervals. A data-driven choice of the number of upper order statistics in the estimation is suggested and shown to work well in simulations. An application to stock index returns documents the improvements of CVaR and CES forecasts.  相似文献   

11.
Multivariate extreme value statistical analysis is concerned with observations on several variables which are thought to possess some degree of tail dependence. The main approaches to inference for multivariate extremes consist in approximating either the distribution of block component‐wise maxima or the distribution of the exceedances over a high threshold. Although the expressions of the asymptotic density functions of these distributions may be characterized, they cannot be computed in general. In this paper, we study the case where the spectral random vector of the multivariate max‐stable distribution has known conditional distributions. The asymptotic density functions of the multivariate extreme value distributions may then be written through univariate integrals that are easily computed or simulated. The asymptotic properties of two likelihood estimators are presented, and the utility of the method is examined via simulation.  相似文献   

12.
Mihyun Kim 《Statistics》2019,53(4):699-720
Functional principal component scores are commonly used to reduce mathematically infinitely dimensional functional data to finite dimensional vectors. In certain applications, most notably in finance, these scores exhibit tail behaviour consistent with the assumption of regular variation. Knowledge of the index of the regular variation, α, is needed to apply methods of extreme value theory. The most commonly used method of the estimation of α is the Hill estimator. We derive conditions under which the Hill estimator computed from the sample scores is consistent for the tail index of the unobservable population scores.  相似文献   

13.
In this paper, a two-parameter discrete distribution named Misclassified Size Biased Discrete Lindley distribution is defined under the situation of misclassification where some of the observations corresponding to x = c + 1 are reported as x = c with misclassification errorα. Different estimation methods like maximum likelihood estimation, moment estimation, and Bayes Estimation are considered to estimate the parameters of Misclassified Size Biased Discrete Lindley distribution. These methods are compared by using mean square error through simulation study with varying sample sizes. Further general form of factorial moment is also obtained for Misclassified Size Biased Discrete Lindley distribution. Real life data set is used to fit Misclassified Size Biased Discrete Lindley distribution.  相似文献   

14.
The bootstrap variance estimate is widely used in semiparametric inferences. However, its theoretical validity is a well‐known open problem. In this paper, we provide a first theoretical study on the bootstrap moment estimates in semiparametric models. Specifically, we establish the bootstrap moment consistency of the Euclidean parameter, which immediately implies the consistency of t‐type bootstrap confidence set. It is worth pointing out that the only additional cost to achieve the bootstrap moment consistency in contrast with the distribution consistency is to simply strengthen the L1 maximal inequality condition required in the latter to the Lp maximal inequality condition for p≥1. The general Lp multiplier inequality developed in this paper is also of independent interest. These general conclusions hold for the bootstrap methods with exchangeable bootstrap weights, for example, non‐parametric bootstrap and Bayesian bootstrap. Our general theory is illustrated in the celebrated Cox regression model.  相似文献   

15.
Proschan, Brittain, and Kammerman made a very interesting observation that for some examples of the unequal allocation minimization, the mean of the unconditional randomization distribution is shifted away from 0. Kuznetsova and Tymofyeyev linked this phenomenon to the variations in the allocation ratio from allocation to allocation in the examples considered in the paper by Proschan et al. and advocated the use of unequal allocation procedures that preserve the allocation ratio at every step. In this paper, we show that the shift phenomenon extends to very common settings: using conditional randomization test in a study with equal allocation. This phenomenon has the same cause: variations in the allocation ratio among the allocation sequences in the conditional reference set, not previously noted. We consider two kinds of conditional randomization tests. The first kind is the often used randomization test that conditions on the treatment group totals; we describe the variations in the conditional allocation ratio with this test on examples of permuted block randomization and biased coin randomization. The second kind is the randomization test proposed by Zheng and Zelen for a multicenter trial with permuted block central allocation that conditions on the within‐center treatment totals. On the basis of the sequence of conditional allocation ratios, we derive the value of the shift in the conditional randomization distribution for specific vector of responses and the expected value of the shift when responses are independent identically distributed random variables. We discuss the asymptotic behavior of the shift for the two types of tests. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
In this work, we develop a method of adaptive non‐parametric estimation, based on ‘warped’ kernels. The aim is to estimate a real‐valued function s from a sample of random couples (X,Y). We deal with transformed data (Φ(X),Y), with Φ a one‐to‐one function, to build a collection of kernel estimators. The data‐driven bandwidth selection is performed with a method inspired by Goldenshluger and Lepski (Ann. Statist., 39, 2011, 1608). The method permits to handle various problems such as additive and multiplicative regression, conditional density estimation, hazard rate estimation based on randomly right‐censored data, and cumulative distribution function estimation from current‐status data. The interest is threefold. First, the squared‐bias/variance trade‐off is automatically realized. Next, non‐asymptotic risk bounds are derived. Lastly, the estimator is easily computed, thanks to its simple expression: a short simulation study is presented.  相似文献   

17.
Abstract. Let M be an isotonic real‐valued function on a compact subset of and let be an unconstrained estimator of M. A feasible monotonizing technique is to take the largest (smallest) monotone function that lies below (above) the estimator or any convex combination of these two envelope estimators. When the process is asymptotically equicontinuous for some sequence rn→∞, we show that these projection‐type estimators are rn‐equivalent in probability to the original unrestricted estimator. Our first motivating application involves a monotone estimator of the conditional distribution function that has the distributional properties of the local linear regression estimator. Applications also include the estimation of econometric (probability‐weighted moment, quantile) and biometric (mean remaining lifetime) functions.  相似文献   

18.
Consider a linear regression model with unknown regression parameters β0 and independent errors of unknown distribution. Block the observations into q groups whose independent variables have a common value and measure the homogeneity of the blocks of residuals by a Cramér‐von Mises q‐sample statistic Tq(β). This statistic is designed so that its expected value as a function of the chosen regression parameter β has a minimum value of zero precisely at the true value β0. The minimizer β of Tq(β) over all β is shown to be a consistent estimate of β0. It is also shown that the bootstrap distribution of Tq0) can be used to do a lack of fit test of the regression model and to construct a confidence region for β0  相似文献   

19.
We derive the asymptotic distributions of the Dickey–Fuller (DF) and augmented DF (ADF) tests for unit root processes with Generalized Autoregressive Conditional Heteroscedastic (GARCH) errors under fairly mild conditions. We show that the asymptotic distributions of the DF tests and ADF t‐type test are the same as those obtained in the independent and identically distributed Gaussian cases, regardless of whether the fourth moment of the underlying GARCH process is finite or not. Our results go beyond earlier ones by showing that the fourth moment condition on the scaled conditional errors is totally unnecessary. Some Monte Carlo simulations are provided to illustrate the finite‐sample‐size properties of the tests.  相似文献   

20.
Abstract. General autoregressive moving average (ARMA) models extend the traditional ARMA models by removing the assumptions of causality and invertibility. The assumptions are not required under a non‐Gaussian setting for the identifiability of the model parameters in contrast to the Gaussian setting. We study M‐estimation for general ARMA processes with infinite variance, where the distribution of innovations is in the domain of attraction of a non‐Gaussian stable law. Following the approach taken by Davis et al. (1992) and Davis (1996) , we derive a functional limit theorem for random processes based on the objective function, and establish asymptotic properties of the M‐estimator. We also consider bootstrapping the M‐estimator and extend the results of Davis & Wu (1997) to the present setting so that statistical inferences are readily implemented. Simulation studies are conducted to evaluate the finite sample performance of the M‐estimation and bootstrap procedures. An empirical example of financial time series is also provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号