首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bayesian inclusion probabilities have become a popular tool for variable assessment. From a frequentist perspective, it is often difficult to evaluate these probabilities as typically no Type I error rates are considered, neither are any explorations of power of the methods given. This paper considers how a frequentist may evaluate Bayesian inclusion probabilities for screening predictors. This evaluation looks at both unrestricted and restricted model spaces and develops a framework which a frequentist can utilize inclusion probabilities that preserve Type I error rates. Furthermore, this framework is applied to an analysis of the Arabidopsis thaliana with respect to determining quantitative trait loci associated with cotelydon opening angle.  相似文献   

2.
Modelling of HIV dynamics in AIDS research has greatly improved our understanding of the pathogenesis of HIV-1 infection and guided for the treatment of AIDS patients and evaluation of antiretroviral therapies. Some of the model parameters may have practical meanings with prior knowledge available, but others might not have prior knowledge. Incorporating priors can improve the statistical inference. Although there have been extensive Bayesian and frequentist estimation methods for the viral dynamic models, little work has been done on making simultaneous inference about the Bayesian and frequentist parameters. In this article, we propose a hybrid Bayesian inference approach for viral dynamic nonlinear mixed-effects models using the Bayesian frequentist hybrid theory developed in Yuan [Bayesian frequentist hybrid inference, Ann. Statist. 37 (2009), pp. 2458–2501]. Compared with frequentist inference in a real example and two simulation examples, the hybrid Bayesian approach is able to improve the inference accuracy without compromising the computational load.  相似文献   

3.
In this paper we propose a new lifetime model for multivariate survival data with a surviving fraction. We develop this model assuming that there are m types of unobservable competing risks, where each risk is related to a time of the occurrence of an event of interest. We explore the use of Markov chain Monte Carlo methods to develop a Bayesian analysis for the proposed model. We also perform a simulation study in order to analyse the frequentist coverage probabilities of credible interval derived from posteriors. Our modelling is illustrated through a real data set.  相似文献   

4.
This paper gives an exposition of the use of the posterior likelihood ratio for testing point null hypotheses in a fully Bayesian framework. Connections between the frequentist P-value and the posterior distribution of the likelihood ratio are used to interpret and calibrate P-values in a Bayesian context, and examples are given to show the use of simple posterior simulation methods to provide Bayesian tests of common hypotheses.  相似文献   

5.

In analyzing failure data pertaining to a repairable system, perhaps the most widely used parametric model is a nonhomogeneous Poisson process with Weibull intensity, more commonly referred to as the Power Law Process (PLP) model. Investigations relating to inference of parameters of the PLP under a frequentist framework abound in the literature. The focus of this article is to supplement those findings from a Bayesian perspective, which has thus far been explored to a limited extent in this context. Main emphasis is on the inference of the intensity function of the PLP. Both estimation and future prediction are considered under traditional as well as more complex censoring schemes. Modern computational tools such as Markov Chain Monte Carlo are exploited efficiently to facilitate the numerical evaluation process. Results from the Bayesian inference are contrasted with the corresponding findings from a frequentist analysis, both from a qualitative and a quantitative viewpoint. The developed methodology is implemented in analyzing interval-censored failure data of equipments in a fleet of marine vessels.  相似文献   

6.
Point processes are the stochastic models most suitable for describing physical phenomena that appear at irregularly spaced times, such as the earthquakes. These processes are uniquely characterized by their conditional intensity, that is, by the probability that an event will occur in the infinitesimal interval (t, t+Δt), given the history of the process up tot. The seismic phenomenon displays different behaviours on different time and size scales; in particular, the occurrence of destructive shocks over some centuries in a seismogenic region may be explained by the elastic rebound theory. This theory has inspired the so-called stress release models: their conditional intensity translates the idea that an earthquake produces a sudden decrease in the amount of strain accumulated gradually over time along a fault, and the subsequent event occurs when the stress exceeds the strength of the medium. This study has a double objective: the formulation of these models in the Bayesian framework, and the assignment to each event of a mark, that is its magnitude, modelled through a distribution that depends at timet on the stress level accumulated up to that instant. The resulting parameter space is constrained and dependent on the data, complicating Bayesian computation and analysis. We have resorted to Monte Carlo methods to solve these problems.  相似文献   

7.
Just as frequentist hypothesis tests have been developed to check model assumptions, prior predictive p-values and other Bayesian p-values check prior distributions as well as other model assumptions. These model checks not only suffer from the usual threshold dependence of p-values, but also from the suppression of model uncertainty in subsequent inference. One solution is to transform Bayesian and frequentist p-values for model assessment into a fiducial distribution across the models. Averaging the Bayesian or frequentist posterior distributions with respect to the fiducial distribution can reproduce results from Bayesian model averaging or classical fiducial inference.  相似文献   

8.
ABSTRACT

The cost and time of pharmaceutical drug development continue to grow at rates that many say are unsustainable. These trends have enormous impact on what treatments get to patients, when they get them and how they are used. The statistical framework for supporting decisions in regulated clinical development of new medicines has followed a traditional path of frequentist methodology. Trials using hypothesis tests of “no treatment effect” are done routinely, and the p-value < 0.05 is often the determinant of what constitutes a “successful” trial. Many drugs fail in clinical development, adding to the cost of new medicines, and some evidence points blame at the deficiencies of the frequentist paradigm. An unknown number effective medicines may have been abandoned because trials were declared “unsuccessful” due to a p-value exceeding 0.05. Recently, the Bayesian paradigm has shown utility in the clinical drug development process for its probability-based inference. We argue for a Bayesian approach that employs data from other trials as a “prior” for Phase 3 trials so that synthesized evidence across trials can be utilized to compute probability statements that are valuable for understanding the magnitude of treatment effect. Such a Bayesian paradigm provides a promising framework for improving statistical inference and regulatory decision making.  相似文献   

9.
The problem of statistical calibration of a measuring instrument can be framed both in a statistical context as well as in an engineering context. In the first, the problem is dealt with by distinguishing between the ‘classical’ approach and the ‘inverse’ regression approach. Both of these models are static models and are used to estimate exact measurements from measurements that are affected by error. In the engineering context, the variables of interest are considered to be taken at the time at which you observe it. The Bayesian time series analysis method of Dynamic Linear Models can be used to monitor the evolution of the measures, thus introducing a dynamic approach to statistical calibration. The research presented employs a new approach to performing statistical calibration. A simulation study in the context of microwave radiometry is conducted that compares the dynamic model to traditional static frequentist and Bayesian approaches. The focus of the study is to understand how well the dynamic statistical calibration method performs under various signal-to-noise ratios, r.  相似文献   

10.
This paper aims to connect Bayesian analysis and frequentist theory in the context of multiple comparisons. The authors show that when testing the equality of two sample means, the posterior probability of the one‐sided alternative hypothesis, defined as a half‐space, shares with the frequentist P‐value the property of uniformity under the null hypothesis. Ultimately, the posterior probability may thus be used in the same spirit as a P‐value in the Benjamini‐Hochberg procedure, or in any of its extensions.  相似文献   

11.
The well-known Wilson and Agresti–Coull confidence intervals for a binomial proportion p are centered around a Bayesian estimator. Using this as a starting point, similarities between frequentist confidence intervals for proportions and Bayesian credible intervals based on low-informative priors are studied using asymptotic expansions. A Bayesian motivation for a large class of frequentist confidence intervals is provided. It is shown that the likelihood ratio interval for p approximates a Bayesian credible interval based on Kerman’s neutral noninformative conjugate prior up to O(n? 1) in the confidence bounds. For the significance level α ? 0.317, the Bayesian interval based on the Jeffreys’ prior is then shown to be a compromise between the likelihood ratio and Wilson intervals. Supplementary materials for this article are available online.  相似文献   

12.
Uniformly most powerful Bayesian tests (UMPBTs) are a new class of Bayesian tests in which null hypotheses are rejected if their Bayes factor exceeds a specified threshold. The alternative hypotheses in UMPBTs are defined to maximize the probability that the null hypothesis is rejected. Here, we generalize the notion of UMPBTs by restricting the class of alternative hypotheses over which this maximization is performed, resulting in restricted most powerful Bayesian tests (RMPBTs). We then derive RMPBTs for linear models by restricting alternative hypotheses to g priors. For linear models, the rejection regions of RMPBTs coincide with those of usual frequentist F‐tests, provided that the evidence thresholds for the RMPBTs are appropriately matched to the size of the classical tests. This correspondence supplies default Bayes factors for many common tests of linear hypotheses. We illustrate the use of RMPBTs for ANOVA tests and t‐tests and compare their performance in numerical studies.  相似文献   

13.
In the Bayesian approach, the Behrens–Fisher problem has been posed as one of estimation for the difference of two means. No Bayesian solution to the Behrens–Fisher testing problem has yet been given due, perhaps, to the fact that the conventional priors used are improper. While default Bayesian analysis can be carried out for estimation purposes, it poses difficulties for testing problems. This paper generates sensible intrinsic and fractional prior distributions for the Behrens–Fisher testing problem from the improper priors commonly used for estimation. It allows us to compute the Bayes factor to compare the null and the alternative hypotheses. This default procedure of model selection is compared with a frequentist test and the Bayesian information criterion. We find discrepancy in the sense that frequentist and Bayesian information criterion reject the null hypothesis for data, that the Bayes factor for intrinsic or fractional priors do not.  相似文献   

14.
This paper compares the Bayesian and frequentist approaches to testing a one-sided hypothesis about a multivariate mean. First, this paper proposes a simple way to assign a Bayesian posterior probability to one-sided hypotheses about a multivariate mean. The approach is to use (almost) the exact posterior probability under the assumption that the data has multivariate normal distribution, under either a conjugate prior in large samples or under a vague Jeffreys prior. This is also approximately the Bayesian posterior probability of the hypothesis based on a suitably flat Dirichlet process prior over an unknown distribution generating the data. Then, the Bayesian approach and a frequentist approach to testing the one-sided hypothesis are compared, with results that show a major difference between Bayesian reasoning and frequentist reasoning. The Bayesian posterior probability can be substantially smaller than the frequentist p-value. A class of example is given where the Bayesian posterior probability is basically 0, while the frequentist p-value is basically 1. The Bayesian posterior probability in these examples seems to be more reasonable. Other drawbacks of the frequentist p-value as a measure of whether the one-sided hypothesis is true are also discussed.  相似文献   

15.
In this paper we propose a general cure rate aging model. Our approach enables different underlying activation mechanisms which lead to the event of interest. The number of competing causes of the event of interest is assumed to follow a logarithmic distribution. The model is parameterized in terms of the cured fraction which is then linked to covariates. We explore the use of Markov chain Monte Carlo methods to develop a Bayesian analysis for the proposed model. Moreover, some discussions on the model selection to compare the fitted models are given, as well as case deletion influence diagnostics are developed for the joint posterior distribution based on the ψ-divergence, which has several divergence measures as particular cases, such as the Kullback–Leibler (K-L), J-distance, L1 norm, and χ2-square divergence measures. Simulation studies are performed and experimental results are illustrated based on a real malignant melanoma data.  相似文献   

16.
Central to many inferential situations is the estimation of rational functions of parameters. The mainstream in statistics and econometrics estimates these quantities based on the plug‐in approach without consideration of the main objective of the inferential situation. We propose the Bayesian Minimum Expected Loss (MELO) approach focusing explicitly on the function of interest, and calculating its frequentist variability. Asymptotic properties of the MELO estimator are similar to the plug‐in approach. Nevertheless, simulation exercises show that our proposal is better in situations characterised by small sample sizes and/or noisy data sets. In addition, we observe in the applications that our approach gives lower standard errors than frequently used alternatives when data sets are not very informative.  相似文献   

17.
This paper provides methods of obtaining Bayesian D-optimal Accelerated Life Test (ALT) plans for series systems with independent exponential component lives under the Type-I censoring scheme. Two different Bayesian D-optimality design criteria are considered. For both the criteria, first optimal designs for a given number of experimental points are found by solving a finite-dimensional constrained optimization problem. Next, the global optimality of such an ALT plan is ensured by applying the General Equivalence Theorem. A detailed sensitivity analysis is also carried out to investigate the effect of different planning inputs on the resulting optimal ALT plans. Furthermore, these Bayesian optimal plans are also compared with the corresponding (frequentist) locally D-optimal ALT plans.  相似文献   

18.
In drug development, non‐inferiority tests are often employed to determine the difference between two independent binomial proportions. Many test statistics for non‐inferiority are based on the frequentist framework. However, research on non‐inferiority in the Bayesian framework is limited. In this paper, we suggest a new Bayesian index τ = P(π1 > π2 ? Δ0 | X1,X2), where X1 and X2 denote binomial random variables for trials n1 and n2, and parameters π1 and π2, respectively, and the non‐inferiority margin is Δ0 > 0. We show two calculation methods for τ, an approximate method that uses normal approximation and an exact method that uses an exact posterior PDF. We compare the approximate probability with the exact probability for τ. Finally, we present the results of actual clinical trials to show the utility of index τ. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
ABSTRACT

We propose a generalization of the one-dimensional Jeffreys' rule in order to obtain non informative prior distributions for non regular models, taking into account the comments made by Jeffreys in his article of 1946. These non informatives are parameterization invariant and the Bayesian intervals have good behavior in frequentist inference. In some important cases, we can generate non informative distributions for multi-parameter models with non regular parameters. In non regular models, the Bayesian method offers a satisfactory solution to the inference problem and also avoids the problem that the maximum likelihood estimator has with these models. Finally, we obtain non informative distributions in job-search and deterministic frontier production homogenous models.  相似文献   

20.
Statistical control charts are often used in industry to monitor processes in the interests of quality improvement. Such charts assume independence and normality of the control statistic, but these assumptions are often violated in practice. To better capture the true shape of the underlying distribution of the control statistic, we utilize the g-and-k distributions to estimate probability limits, the true ARL, and the error in confidence that arises from incorrectly assuming normality. A sensitivity assessment reveals that the extent of error in confidence associated with control chart decision-making procedures increases more rapidly as the distribution becomes more skewed or as the tails of the distribution become longer than those of the normal distribution. These methods are illustrated using both a frequentist and computational Bayesian approach to estimate the g-and-k parameters in two different practical applications. The Bayesian approach is appealing because it can account for prior knowledge in the estimation procedure and yields posterior distributions of parameters of interest such as control limits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号