首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pooled variance of p samples presumed to have been obtained from p populations having common variance σ2, has invariably been adopted as the default estimator for σ2. In this paper, alternative estimators of the common population variance are developed. These estimators are biased and have lower mean-squared error values than . The comparative merit of these estimators over the unbiased estimator is explored using relative efficiency (a ratio of mean-squared error values).  相似文献   

2.
The unbiased estimator of a population variance σ2, S 2 has traditionally been overemphasized, regardless of sample size. In this paper, alternative estimators of population variance are developed. These estimators are biased and have the minimum possible mean-squared error [and we define them as the “minimum mean-squared error biased estimators” (MBBE)]. The comparative merit of these estimators over the unbiased estimator is explored using relative efficiency (RE) (a ratio of mean-squared error values). It is found that, across all population distributions investigated, the RE of the MBBE is much higher for small samples and progressively diminishes to 1 with increasing sample size. The paper gives two applications involving the normal and exponential distributions.  相似文献   

3.
Let X 1, X 2, ..., X n be a random sample from a normal population with mean μ and variance σ 2. In many real life situations, specially in lifetime or reliability estimation, the parameter μ is known a priori to lie in an interval [a, ∞). This makes the usual maximum likelihood estimator (MLE) ̄ an inadmissible estimator of μ with respect to the squared error loss. This is due to the fact that it may take values outside the parameter space. Katz (1961) and Gupta and Rohatgi (1980) proposed estimators which lie completely in the given interval. In this paper we derive some new estimators for μ and present a comparative study of the risk performance of these estimators. Both the known and unknown variance cases have been explored. The new estimators are shown to have superior risk performance over the existing ones over large portions of the parameter space.  相似文献   

4.
In this paper, we have obtained the marginal and joint distributions of concomitants of k-record values for the Morgenstern family of distributions (MFD) and hence obtained the moments and product moments of concomitants of k-record values. Applying this results we have derived the best linear unbiased estimators of some parameters involved in Morgenstern type bivariate logistic distribution which belongs to MFD based on concomitants of k-record values.  相似文献   

5.
We consider two consistent estimators for the parameters of the linear predictor in the Poisson regression model, where the covariate is measured with errors. The measurement errors are assumed to be normally distributed with known error variance σ u 2 . The SQS estimator, based on a conditional mean-variance model, takes the distribution of the latent covariate into account, and this is here assumed to be a normal distribution. The CS estimator, based on a corrected score function, does not use the distribution of the latent covariate. Nevertheless, for small σ u 2 , both estimators have identical asymptotic covariance matrices up to the order of σ u 2 . We also compare the consistent estimators to the naive estimator, which is based on replacing the latent covariate with its (erroneously) measured counterpart. The naive estimator is biased, but has a smaller covariance matrix than the consistent estimators (at least up to the order of σ u 2 ).  相似文献   

6.
i , i = 1, 2, ..., k be k independent exponential populations with different unknown location parameters θ i , i = 1, 2, ..., k and common known scale parameter σ. Let Y i denote the smallest observation based on a random sample of size n from the i-th population. Suppose a subset of the given k population is selected using the subset selection procedure according to which the population π i is selected iff Y i Y (1)d, where Y (1) is the largest of the Y i 's and d is some suitable constant. The estimation of the location parameters associated with the selected populations is considered for the squared error loss. It is observed that the natural estimator dominates the unbiased estimator. It is also shown that the natural estimator itself is inadmissible and a class of improved estimators that dominate the natural estimator is obtained. The improved estimators are consistent and their risks are shown to be O(kn −2). As a special case, we obtain the coresponding results for the estimation of θ(1), the parameter associated with Y (1). Received: January 6, 1998; revised version: July 11, 2000  相似文献   

7.
This paper is devoted to the problem of estimating the square of population mean (μ2) in normal distribution when a prior estimate or guessed value σ0 2 of the population variance σ2 is available. We have suggested a family of shrinkage estimators , say, for μ2 with its mean squared error formula. A condition is obtained in which the suggested estimator is more efficient than Srivastava et al’s (1980) estimator Tmin. Numerical illustrations have been carried out to demonstrate the merits of the constructed estimator over Tmin. It is observed that some of these estimators offer improvements over Tmin particularly when the population is heterogeneous and σ2 is in the vicinity of σ0 2.  相似文献   

8.
Rasul A. Khan 《Statistics》2015,49(3):705-710
Let X1, X2, …, Xn be iid N(μ, aμ2) (a>0) random variables with an unknown mean μ>0 and known coefficient of variation (CV) √a. The estimation of μ is revisited and it is shown that a modified version of an unbiased estimator of μ [cf. Khan RA. A note on estimating the mean of a normal distribution with known CV. J Am Stat Assoc. 1968;63:1039–1041] is more efficient. A certain linear minimum mean square estimator of Gleser and Healy [Estimating the mean of a normal distribution with known CV. J Am Stat Assoc. 1976;71:977–981] is also modified and improved. These improved estimators are being compared with the maximum likelihood estimator under squared-error loss function. Based on asymptotic consideration, a large sample confidence interval is also mentioned.  相似文献   

9.
LetX 1,X 2, … be a sequence of i.i.d. random variables with some continuous distribution functionF. LetX(n) be then-th record value associated with this sequence and μ n , μ n + be the variables that count the number of record values belonging to the random intervals(f−(X(n)), X(n)), (X(n), f+(X(n))), wheref−, f+ are two continuous functions satisfyingf−(x)<x, f+(x)>x. Properties of μ n , μ n + are studied in the present paper. Some statistical applications connected with these variables are also provided.  相似文献   

10.
We derive approximating formulas for the mean and the variance of an autocorrelation estimator which are of practical use over the entire range of the autocorrelation coefficient ρ. The least-squares estimator ∑ n −1 i =1ε i ε i +1 / ∑ n −1 i =1ε2 i is studied for a stationary AR(1) process with known mean. We use the second order Taylor expansion of a ratio, and employ the arithmetic-geometric series instead of replacing partial Cesàro sums. In case of the mean we derive Marriott and Pope's (1954) formula, with (n− 1)−1 instead of (n)−1, and an additional term α (n− 1)−2. This new formula produces the expected decline to zero negative bias as ρ approaches unity. In case of the variance Bartlett's (1946) formula results, with (n− 1)−1 instead of (n)−1. The theoretical expressions are corroborated with a simulation experiment. A comparison shows that our formula for the mean is more accurate than the higher-order approximation of White (1961), for |ρ| > 0.88 and n≥ 20. In principal, the presented method can be used to derive approximating formulas for other estimators and processes. Received: November 30, 1999; revised version: July 3, 2000  相似文献   

11.
Let Π1,…,Πk be k populations with Πi being Pareto with unknown scale parameter αi and known shape parameter βi;i=1,…,k. Suppose independent random samples (Xi1,…,Xin), i=1,…,k of equal size are drawn from each of k populations and let Xi denote the smallest observation of the ith sample. The population corresponding to the largest Xi is selected. We consider the problem of estimating the scale parameter of the selected population and obtain the uniformly minimum variance unbiased estimator (UMVUE) when the shape parameters are assumed to be equal. An admissible class of linear estimators is derived. Further, a general inadmissibility result for the scale equivariant estimators is proved.  相似文献   

12.
The linear hypothesis test procedure is considered in the restricted linear modelsM r = {y, Xβ |Rβ = 0, σ 2V} andM r * = {y, Xβ |ARβ = 0, σ 2V}. Necessary and sufficient conditions are derived under which the statistic providing anF-test for the linear hypothesisH 0:Kβ=0 in the modelM r * (Mr) continues to be valid in the modelM r (M r * ); the results obtained cover the case whereM r * is replaced by the general Gauss-Markov modelM = {y, Xβ, σ 2V}.  相似文献   

13.
The approach to preliminary test estimation based on comparing the weighted quadratic risk function of two competing estimators of β under the linear regression model {y,Xβ, σ2 I} is extended to the case when a given vector of parametric functions κ=Kβ is to be estimated under the general Gauss-Markov model.  相似文献   

14.
For estimating an unknown parameter θ, we introduce and motivate the use of balanced loss functions of the form Lr, w, d0(q, d)=wr(d0, d)+ (1-w) r(q, d){L_{\rho, \omega, \delta_0}(\theta, \delta)=\omega \rho(\delta_0, \delta)+ (1-\omega) \rho(\theta, \delta)}, as well as the weighted version q(q) Lr, w, d0(q, d){q(\theta) L_{\rho, \omega, \delta_0}(\theta, \delta)}, where ρ(θ, δ) is an arbitrary loss function, δ 0 is a chosen a priori “target” estimator of q, w ? [0,1){\theta, \omega \in[0,1)}, and q(·) is a positive weight function. we develop Bayesian estimators under Lr, w, d0{L_{\rho, \omega, \delta_0}} with ω > 0 by relating such estimators to Bayesian solutions under Lr, w, d0{L_{\rho, \omega, \delta_0}} with ω = 0. Illustrations are given for various choices of ρ, such as absolute value, entropy, linex, and squared error type losses. Finally, under various robust Bayesian analysis criteria including posterior regret gamma-minimaxity, conditional gamma-minimaxity, and most stable, we establish explicit connections between optimal actions derived under balanced and unbalanced losses.  相似文献   

15.
Consider the problem of obtaining a confidence interval for some function g(θ) of an unknown parameter θ, for which a (1-α)-confidence interval is given. If g(θ) is one-to-one the solution is immediate. However, if g is not one-to-one the problem is more complex and depends on the structure of g. In this note the situation where g is a nonmonotone convex function is considered. Based on some inequality, a confidence interval for g(θ) with confidence level at least 1-α is obtained from the given (1-α) confidence interval on θ. Such a result is then applied to the n(μ, σ 2) distribution with σ known. It is shown that the coverage probability of the resulting confidence interval, while being greater than 1-α, has in addition an upper bound which does not exceed Θ(3z1−α/2)-α/2.  相似文献   

16.
In this article, we establish several recurrence relations for the single and product moments of progressively Type-II right censored order statistics from a generalized logistic distribution. The use of these relations in a systematic manner allow us to compute all the means, variances, and covariances of progressively Type-II right censored order statistics from the generalized logistic distribution for all sample sizes n, effective sample sizes m, and all progressive censoring schemes (R1, …, Rm). These moments are then utilized to derive best linear unbiased estimators of the scale and location-scale parameters of the generalized logistic distribution. A comparison of these estimators with the maximum likelihood estimates is then made through Monte Carlo simulations. Finally, the best linear unbiased predictors of censored failure times is discussed briefly.  相似文献   

17.
ABSTRACT

In this article, we consider a sampling scheme in record-breaking data set-up, as record ranked set sampling. We compare the proposed sampling with the well-known sampling scheme in record values known as inverse sampling scheme when the underlying distribution follows the proportional hazard rate model. Various point estimators are obtained in each sampling schemes and compared with respect to mean squared error and Pitman measure of closeness criteria. It is observed in most of the situations that the new sampling scheme provides more efficient estimators than their counterparts. Finally, one data set has been analyzed for illustrative purposes.  相似文献   

18.
The notion of deficiency was introduced by Hodges and Lehmann. It is known that best asymptotically normal (BAN) estimators are second order asymptotically efficient in the class A2 of all second order asymptotically median unbiased estimators. In this paper it is shown that the asymptotic deficiency of any two estimators in the restricted class D of the third order asymptotically median unbiased BAN estimators is given by the difference between the coefficients of order n-1 of the variances of the estimators.  相似文献   

19.
This paper derives first-order sampling moments of individual Mahalanobis distances (MDs) in cases when the dimension p of the variable is proportional to the sample size n. Asymptotic expected values when n, p → ∞ are derived under the assumption p/nc,?0 ? c < 1. It is shown that some types of standard estimators remain unbiased in this case, while others are asymptotically biased, a property that appears to be unnoticed in the literature. Second-order moments are also supplied to give some additional insight to the matter.  相似文献   

20.
In this paper, we consider concomitants of order statistics arising from the extended Farlie–Gumbel–Morgenstern bivariate logistic distribution and develop its distribution theory. Using ranked set sample obtained from the above distribution, unbiased estimators of the parameters associated with the study variate involved in it are generated. The best linear unbiased estimators (BLUEs) based on observations in the ranked set sample of those parameters as well have been derived. The efficiencies of the BLUEs relative to the respective unbiased estimators generated also have been evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号