首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Today, chemical risk and safety assessments rely heavily on the estimation of environmental fate by models. The key compound‐related properties in such models describe partitioning and reactivity. Uncertainty in determining these properties can be separated into random and systematic (incompleteness) components, requiring different types of representation. Here, we evaluate two approaches that are suitable to treat also systematic errors, fuzzy arithmetic, and probability bounds analysis. When a best estimate (mode) and a range can be computed for an input parameter, then it is possible to characterize the uncertainty with a triangular fuzzy number (possibility distribution) or a corresponding probability box bound by two uniform distributions. We use a five‐compartment Level I fugacity model and reported empirical data from the literature for three well‐known environmental pollutants (benzene, pyrene, and DDT) as illustrative cases for this evaluation. Propagation of uncertainty by discrete probability calculus or interval arithmetic can be done at a low computational cost and gives maximum flexibility in applying different approaches. Our evaluation suggests that the difference between fuzzy arithmetic and probability bounds analysis is small, at least for this specific case. The fuzzy arithmetic approach can, however, be regarded as less conservative than probability bounds analysis if the assumption of independence is removed. Both approaches are sensitive to repeated parameters that may inflate the uncertainty estimate. Uncertainty described by probability boxes was therefore also propagated through the model by Monte Carlo simulation to show how this problem can be avoided.  相似文献   

2.
The appearance of measurement error in exposure and risk factor data potentially affects any inferences regarding variability and uncertainty because the distribution representing the observed data set deviates from the distribution that represents an error-free data set. A methodology for improving the characterization of variability and uncertainty with known measurement errors in data is demonstrated in this article based on an observed data set, known measurement error, and a measurement-error model. A practical method for constructing an error-free data set is presented and a numerical method based upon bootstrap pairs, incorporating two-dimensional Monte Carlo simulation, is introduced to address uncertainty arising from measurement error in selected statistics. When measurement error is a large source of uncertainty, substantial differences between the distribution representing variability of the observed data set and the distribution representing variability of the error-free data set will occur. Furthermore, the shape and range of the probability bands for uncertainty differ between the observed and error-free data set. Failure to separately characterize contributions from random sampling error and measurement error will lead to bias in the variability and uncertainty estimates. However, a key finding is that total uncertainty in mean can be properly quantified even if measurement and random sampling errors cannot be separated. An empirical case study is used to illustrate the application of the methodology.  相似文献   

3.
《Risk analysis》2018,38(8):1576-1584
Fault trees are used in reliability modeling to create logical models of fault combinations that can lead to undesirable events. The output of a fault tree analysis (the top event probability) is expressed in terms of the failure probabilities of basic events that are input to the model. Typically, the basic event probabilities are not known exactly, but are modeled as probability distributions: therefore, the top event probability is also represented as an uncertainty distribution. Monte Carlo methods are generally used for evaluating the uncertainty distribution, but such calculations are computationally intensive and do not readily reveal the dominant contributors to the uncertainty. In this article, a closed‐form approximation for the fault tree top event uncertainty distribution is developed, which is applicable when the uncertainties in the basic events of the model are lognormally distributed. The results of the approximate method are compared with results from two sampling‐based methods: namely, the Monte Carlo method and the Wilks method based on order statistics. It is shown that the closed‐form expression can provide a reasonable approximation to results obtained by Monte Carlo sampling, without incurring the computational expense. The Wilks method is found to be a useful means of providing an upper bound for the percentiles of the uncertainty distribution while being computationally inexpensive compared with full Monte Carlo sampling. The lognormal approximation method and Wilks’s method appear attractive, practical alternatives for the evaluation of uncertainty in the output of fault trees and similar multilinear models.  相似文献   

4.
Traditionally, microbial risk assessors have used point estimates to evaluate the probability that an individual will become infected. We developed a quantitative approach that shifts the risk characterization perspective from point estimate to distributional estimate, and from individual to population. To this end, we first designed and implemented a dynamic model that tracks traditional epidemiological variables such as the number of susceptible, infected, diseased, and immune, and environmental variables such as pathogen density. Second, we used a simulation methodology that explicitly acknowledges the uncertainty and variability associated with the data. Specifically, the approach consists of assigning probability distributions to each parameter, sampling from these distributions for Monte Carlo simulations, and using a binary classification to assess the output of each simulation. A case study is presented that explores the uncertainties in assessing the risk of giardiasis when swimming in a recreational impoundment using reclaimed water. Using literature-based information to assign parameters ranges, our analysis demonstrated that the parameter describing the shedding of pathogens by infected swimmers was the factor that contributed most to the uncertainty in risk. The importance of other parameters was dependent on reducing the a priori range of this shedding parameter. By constraining the shedding parameter to its lower subrange, treatment efficiency was the parameter most important in predicting whether a simulation resulted in prevalences above or below non outbreak levels. Whereas parameters associated with human exposure were important when the shedding parameter was constrained to a higher subrange. This Monte Carlo simulation technique identified conditions in which outbreaks and/or nonoutbreaks are likely and identified the parameters that most contributed to the uncertainty associated with a risk prediction.  相似文献   

5.
This paper demonstrates a new methodology for probabilistic public health risk assessment using the first-order reliability method. The method provides the probability that incremental lifetime cancer risk exceeds a threshold level, and the probabilistic sensitivity quantifying the relative impact of considering the uncertainty of each random variable on the exceedance probability. The approach is applied to a case study given by Thompson et al. (1) on cancer risk caused by ingestion of benzene-contaminated soil, and the results are compared to that of the Monte Carlo method. Parametric sensitivity analyses are conducted to assess the sensitivity of the probabilistic event with respect to the distribution parameters of the basic random variables, such as the mean and standard deviation. The technique is a novel approach to probabilistic risk assessment, and can be used in situations when Monte Carlo analysis is computationally expensive, such as when the simulated risk is at the tail of the risk probability distribution.  相似文献   

6.
A method is proposed for integrated probabilistic risk assessment where exposure assessment and hazard characterization are both included in a probabilistic way. The aim is to specify the probability that a random individual from a defined (sub)population will have an exposure high enough to cause a particular health effect of a predefined magnitude, the critical effect size ( CES ). The exposure level that results in exactly that CES in a particular person is that person's individual critical effect dose ( ICED ). Individuals in a population typically show variation, both in their individual exposure ( IEXP ) and in their ICED . Both the variation in IEXP and the variation in ICED are quantified in the form of probability distributions. Assuming independence between both distributions, they are combined (by Monte Carlo) into a distribution of the individual margin of exposure ( IMoE ). The proportion of the IMoE distribution below unity is the probability of critical exposure ( PoCE ) in the particular (sub)population. Uncertainties involved in the overall risk assessment (i.e., both regarding exposure and effect assessment) are quantified using Monte Carlo and bootstrap methods. This results in an uncertainty distribution for any statistic of interest, such as the probability of critical exposure ( PoCE ). The method is illustrated based on data for the case of dietary exposure to the organophosphate acephate. We present plots that concisely summarize the probabilistic results, retaining the distinction between variability and uncertainty. We show how the relative contributions from the various sources of uncertainty involved may be quantified.  相似文献   

7.
A. E. Ades  G. Lu 《Risk analysis》2003,23(6):1165-1172
Monte Carlo simulation has become the accepted method for propagating parameter uncertainty through risk models. It is widely appreciated, however, that correlations between input variables must be taken into account if models are to deliver correct assessments of uncertainty in risk. Various two-stage methods have been proposed that first estimate a correlation structure and then generate Monte Carlo simulations, which incorporate this structure while leaving marginal distributions of parameters unchanged. Here we propose a one-stage alternative, in which the correlation structure is estimated from the data directly by Bayesian Markov Chain Monte Carlo methods. Samples from the posterior distribution of the outputs then correctly reflect the correlation between parameters, given the data and the model. Besides its computational simplicity, this approach utilizes the available evidence from a wide variety of structures, including incomplete data and correlated and uncorrelated repeat observations. The major advantage of a Bayesian approach is that, rather than assuming the correlation structure is fixed and known, it captures the joint uncertainty induced by the data in all parameters, including variances and covariances, and correctly propagates this through the decision or risk model. These features are illustrated with examples on emissions of dioxin congeners from solid waste incinerators.  相似文献   

8.
Uncertainty of environmental concentrations is calculated with the regional multimedia exposure model of EUSES 1.0 by considering probability input distributions for aqueous solubility, vapor pressure, and octanol-water partition coefficient, K(ow). Only reliable experimentally determined data are selected from available literature for eight reference chemicals representing a wide substance property spectrum. Monte Carlo simulations are performed with uniform, triangular, and log-normal input distributions to assess the influence of the choice of input distribution type on the predicted concentration distributions. The impact of input distribution shapes on output variance exceeds the effect on the output mean by one order of magnitude. Both are affected by influence and uncertainty (i.e., variance) of the input variable as well. Distributional shape has no influence when the sensitivity function of the respective parameter is perfectly linear. For nonlinear relationships, overlap of probability mass of input distribution with influential ranges of the parameter space is important. Differences in computed output distribution are greatest when input distributions differ in the most influential parameter range.  相似文献   

9.
A wide range of uncertainties will be introduced inevitably during the process of performing a safety assessment of engineering systems. The impact of all these uncertainties must be addressed if the analysis is to serve as a tool in the decision-making process. Uncertainties present in the components (input parameters of model or basic events) of model output are propagated to quantify its impact in the final results. There are several methods available in the literature, namely, method of moments, discrete probability analysis, Monte Carlo simulation, fuzzy arithmetic, and Dempster-Shafer theory. All the methods are different in terms of characterizing at the component level and also in propagating to the system level. All these methods have different desirable and undesirable features, making them more or less useful in different situations. In the probabilistic framework, which is most widely used, probability distribution is used to characterize uncertainty. However, in situations in which one cannot specify (1) parameter values for input distributions, (2) precise probability distributions (shape), and (3) dependencies between input parameters, these methods have limitations and are found to be not effective. In order to address some of these limitations, the article presents uncertainty analysis in the context of level-1 probabilistic safety assessment (PSA) based on a probability bounds (PB) approach. PB analysis combines probability theory and interval arithmetic to produce probability boxes (p-boxes), structures that allow the comprehensive propagation through calculation in a rigorous way. A practical case study is also carried out with the developed code based on the PB approach and compared with the two-phase Monte Carlo simulation results.  相似文献   

10.
Marc Kennedy  Andy Hart 《Risk analysis》2009,29(10):1427-1442
We propose new models for dealing with various sources of variability and uncertainty that influence risk assessments for dietary exposure. The uncertain or random variables involved can interact in complex ways, and the focus is on methodology for integrating their effects and on assessing the relative importance of including different uncertainty model components in the calculation of dietary exposures to contaminants, such as pesticide residues. The combined effect is reflected in the final inferences about the population of residues and subsequent exposure assessments. In particular, we show how measurement uncertainty can have a significant impact on results and discuss novel statistical options for modeling this uncertainty. The effect of measurement error is often ignored, perhaps due to the laboratory process conforming to the relevant international standards, for example, or is treated in an  ad hoc  way. These issues are common to many dietary risk analysis problems, and the methods could be applied to any food and chemical of interest. An example is presented using data on carbendazim in apples and consumption surveys of toddlers.  相似文献   

11.
Roger Cooke 《Risk analysis》2010,30(3):330-339
The practice of uncertainty factors as applied to noncancer endpoints in the IRIS database harkens back to traditional safety factors. In the era before risk quantification, these were used to build in a “margin of safety.” As risk quantification takes hold, the safety factor methods yield to quantitative risk calculations to guarantee safety. Many authors believe that uncertainty factors can be given a probabilistic interpretation as ratios of response rates, and that the reference values computed according to the IRIS methodology can thus be converted to random variables whose distributions can be computed with Monte Carlo methods, based on the distributions of the uncertainty factors. Recent proposals from the National Research Council echo this view. Based on probabilistic arguments, several authors claim that the current practice of uncertainty factors is overprotective. When interpreted probabilistically, uncertainty factors entail very strong assumptions on the underlying response rates. For example, the factor for extrapolating from animal to human is the same whether the dosage is chronic or subchronic. Together with independence assumptions, these assumptions entail that the covariance matrix of the logged response rates is singular. In other words, the accumulated assumptions entail a log‐linear dependence between the response rates. This in turn means that any uncertainty analysis based on these assumptions is ill‐conditioned; it effectively computes uncertainty conditional on a set of zero probability. The practice of uncertainty factors is due for a thorough review. Two directions are briefly sketched, one based on standard regression models, and one based on nonparametric continuous Bayesian belief nets.  相似文献   

12.
Most public health risk assessments assume and combine a series of average, conservative, and worst-case values to derive a conservative point estimate of risk. This procedure has major limitations. This paper demonstrates a new methodology for extended uncertainty analyses in public health risk assessments using Monte Carlo techniques. The extended method begins as do some conventional methods--with the preparation of a spreadsheet to estimate exposure and risk. This method, however, continues by modeling key inputs as random variables described by probability density functions (PDFs). Overall, the technique provides a quantitative way to estimate the probability distributions for exposure and health risks within the validity of the model used. As an example, this paper presents a simplified case study for children playing in soils contaminated with benzene and benzo(a)pyrene (BaP).  相似文献   

13.
While the literature on nonclassical measurement error traditionally relies on the availability of an auxiliary data set containing correctly measured observations, we establish that the availability of instruments enables the identification of a large class of nonclassical nonlinear errors‐in‐variables models with continuously distributed variables. Our main identifying assumption is that, conditional on the value of the true regressors, some “measure of location” of the distribution of the measurement error (e.g., its mean, mode, or median) is equal to zero. The proposed approach relies on the eigenvalue–eigenfunction decomposition of an integral operator associated with specific joint probability densities. The main identifying assumption is used to “index” the eigenfunctions so that the decomposition is unique. We propose a convenient sieve‐based estimator, derive its asymptotic properties, and investigate its finite‐sample behavior through Monte Carlo simulations.  相似文献   

14.
Risks from exposure to contaminated land are often assessed with the aid of mathematical models. The current probabilistic approach is a considerable improvement on previous deterministic risk assessment practices, in that it attempts to characterize uncertainty and variability. However, some inputs continue to be assigned as precise numbers, while others are characterized as precise probability distributions. Such precision is hard to justify, and we show in this article how rounding errors and distribution assumptions can affect an exposure assessment. The outcome of traditional deterministic point estimates and Monte Carlo simulations were compared to probability bounds analyses. Assigning all scalars as imprecise numbers (intervals prescribed by significant digits) added uncertainty to the deterministic point estimate of about one order of magnitude. Similarly, representing probability distributions as probability boxes added several orders of magnitude to the uncertainty of the probabilistic estimate. This indicates that the size of the uncertainty in such assessments is actually much greater than currently reported. The article suggests that full disclosure of the uncertainty may facilitate decision making in opening up a negotiation window. In the risk analysis process, it is also an ethical obligation to clarify the boundary between the scientific and social domains.  相似文献   

15.
The aging domestic oil production infrastructure represents a high risk to the environment because of the type of fluids being handled (oil and brine) and the potential for accidental release of these fluids into sensitive ecosystems. Currently, there is not a quantitative risk model directly applicable to onshore oil exploration and production (E&P) facilities. We report on a probabilistic reliability model created for onshore exploration and production (E&P) facilities. Reliability theory, failure modes and effects analysis (FMEA), and event trees were used to develop the model estimates of the failure probability of typical oil production equipment. Monte Carlo simulation was used to translate uncertainty in input parameter values to uncertainty in the model output. The predicted failure rates were calibrated to available failure rate information by adjusting probability density function parameters used as random variates in the Monte Carlo simulations. The mean and standard deviation of normal variate distributions from which the Weibull distribution characteristic life was chosen were used as adjustable parameters in the model calibration. The model was applied to oil production leases in the Tallgrass Prairie Preserve, Oklahoma. We present the estimated failure probability due to the combination of the most significant failure modes associated with each type of equipment (pumps, tanks, and pipes). The results show that the estimated probability of failure for tanks is about the same as that for pipes, but that pumps have much lower failure probability. The model can provide necessary equipment reliability information for proactive risk management at the lease level by providing quantitative information to base allocation of maintenance resources to high-risk equipment that will minimize both lost production and ecosystem damage.  相似文献   

16.
This paper presents an approach for characterizing the probability of adverse effects occurring in a population exposed to dose rates in excess of the Reference Dose (RfD). The approach uses a linear threshold (hockey stick) model of response and is based on the current system of uncertainty factors used in setting RfDs. The approach requires generally available toxicological estimates such as No-Observed-Adverse-Effect Levels (NOAELs) or Benchmark Doses and doses at which adverse effects are observed in 50% of the test animals (ED50s). In this approach, Monte Carlo analysis is used to characterize the uncertainty in the dose response slope based on the range and magnitude of the key sources of uncertainty in setting protective doses. The method does not require information on the shape of the dose response curve for specific chemicals, but is amenable to the inclusion of such data. The approach is applied to four compounds to produce estimates of response rates for dose rates greater than the RfD  相似文献   

17.
This article presents a general model for estimating population heterogeneity and "lack of knowledge" uncertainty in methylmercury (MeHg) exposure assessments using two-dimensional Monte Carlo analysis. Using data from fish-consuming populations in Bangladesh, Brazil, Sweden, and the United Kingdom, predictive model estimates of dietary MeHg exposures were compared against those derived from biomarkers (i.e., [Hg]hair and [Hg]blood). By disaggregating parameter uncertainty into components (i.e., population heterogeneity, measurement error, recall error, and sampling error) estimates were obtained of the contribution of each component to the overall uncertainty. Steady-state diet:hair and diet:blood MeHg exposure ratios were estimated for each population and were used to develop distributions useful for conducting biomarker-based probabilistic assessments of MeHg exposure. The 5th and 95th percentile modeled MeHg exposure estimates around mean population exposure from each of the four study populations are presented to demonstrate lack of knowledge uncertainty about a best estimate for a true mean. Results from a U.K. study population showed that a predictive dietary model resulted in a 74% lower lack of knowledge uncertainty around a central mean estimate relative to a hair biomarker model, and also in a 31% lower lack of knowledge uncertainty around central mean estimate relative to a blood biomarker model. Similar results were obtained for the Brazil and Bangladesh populations. Such analyses, used here to evaluate alternative models of dietary MeHg exposure, can be used to refine exposure instruments, improve information used in site management and remediation decision making, and identify sources of uncertainty in risk estimates.  相似文献   

18.
Bayesian Monte Carlo (BMC) decision analysis adopts a sampling procedure to estimate likelihoods and distributions of outcomes, and then uses that information to calculate the expected performance of alternative strategies, the value of information, and the value of including uncertainty. These decision analysis outputs are therefore subject to sample error. The standard error of each estimate and its bias, if any, can be estimated by the bootstrap procedure. The bootstrap operates by resampling (with replacement) from the original BMC sample, and redoing the decision analysis. Repeating this procedure yields a distribution of decision analysis outputs. The bootstrap approach to estimating the effect of sample error upon BMC analysis is illustrated with a simple value-of-information calculation along with an analysis of a proposed control structure for Lake Erie. The examples show that the outputs of BMC decision analysis can have high levels of sample error and bias.  相似文献   

19.
Topics in Microbial Risk Assessment: Dynamic Flow Tree Process   总被引:5,自引:0,他引:5  
Microbial risk assessment is emerging as a new discipline in risk assessment. A systematic approach to microbial risk assessment is presented that employs data analysis for developing parsimonious models and accounts formally for the variability and uncertainty of model inputs using analysis of variance and Monte Carlo simulation. The purpose of the paper is to raise and examine issues in conducting microbial risk assessments. The enteric pathogen Escherichia coli O157:H7 was selected as an example for this study due to its significance to public health. The framework for our work is consistent with the risk assessment components described by the National Research Council in 1983 (hazard identification; exposure assessment; dose-response assessment; and risk characterization). Exposure assessment focuses on hamburgers, cooked a range of temperatures from rare to well done, the latter typical for fast food restaurants. Features of the model include predictive microbiology components that account for random stochastic growth and death of organisms in hamburger. For dose-response modeling, Shigella data from human feeding studies were used as a surrogate for E. coli O157:H7. Risks were calculated using a threshold model and an alternative nonthreshold model. The 95% probability intervals for risk of illness for product cooked to a given internal temperature spanned five orders of magnitude for these models. The existence of even a small threshold has a dramatic impact on the estimated risk.  相似文献   

20.
Multimodal distribution functions that result from Monte Carlo simulations can be interpreted by superimposing joint probability density functions onto the contour space of the simulated calculations. The method is demonstrated by analysis of the pathway of a radioactive groundwater contaminant using an analytical solution to the transport equation. Simulated concentrations at a fixed time and distance produce multimodal histograms, which are understood with reference to the parameter space for the two random variables-velocity and dispersivity. Numerical integration under the joint density function up to the contour of the analytical solution gives the probability of contaminant exceeding a target concentration. This technique is potentially more efficient than Monte Carlo simulation for low probability events. Visualization of parameter space is restricted to two random variables. Nevertheless, analyzing the two most pertinent random variables in a simulation might still offer insights into the multimodal nature of output histograms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号