首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We investigate the posterior rate of convergence for wavelet shrinkage using a Bayesian approach in general Besov spaces. Instead of studying the Bayesian estimator related to a particular loss function, we focus on the posterior distribution itself from a nonparametric Bayesian asymptotics point of view and study its rate of convergence. We obtain the same rate as in Abramovich et al. (2004) where the authors studied the convergence of several Bayesian estimators.  相似文献   

2.
This paper is concerned with a semiparametric partially linear regression model with unknown regression coefficients, an unknown nonparametric function for the non-linear component, and unobservable Gaussian distributed random errors. We present a wavelet thresholding based estimation procedure to estimate the components of the partial linear model by establishing a connection between an l 1-penalty based wavelet estimator of the nonparametric component and Huber’s M-estimation of a standard linear model with outliers. Some general results on the large sample properties of the estimates of both the parametric and the nonparametric part of the model are established. Simulations are used to illustrate the general results and to compare the proposed methodology with other methods available in the recent literature.  相似文献   

3.
Summary.  Radio scientists require estimates of the rate of change in rain-induced signals. Unfortunately, these signals are observed in the presence of atmospheric noise, which has a variance that is dependent on temperature, pressure and other climatic variables. We develop a systematic approach to the problem, using wavelet differentiation combined with coefficient-dependent thresholding, and illustrate the considerable benefits that this provides over more conventional techniques.  相似文献   

4.
In Oh, Naveau and Lee (2001) a simple method is proposed for reducing the bias at the boundaries for wavelet thresholding regression. The idea is to model the regression function as a sum of wavelet basis functions and a low-order polynomial. The latter is expected to account for the boundary problem. Practical implementation of this method requires the choice of the order of the low-order polynomial, as well as the wavelet thresholding value. This paper proposes two automatic methods for making such choices. Finite sample performances of these two methods are evaluated via numerical experiments.  相似文献   

5.
Change-point approach to data analytic wavelet thresholding   总被引:3,自引:0,他引:3  
Previous proposals in data dependent wavelet threshold selection have used only the magnitudes of the wavelet coefficients in choosing a threshold for each level. Since a jump (or other unusual feature) in the underlying function results in several non-zero coefficients which are adjacent to each other, it is possible to use change-point approaches to take advantage of the information contained in the relative position of the coefficients as well as their magnitudes. The method introduced here represents an initial step in wavelet thresholding when coefficients are kept in the original order.  相似文献   

6.
This paper defines and studies a new class of non-stationary random processes constructed from discrete non-decimated wavelets which generalizes the Cramér (Fourier) representation of stationary time series. We define an evolutionary wavelet spectrum (EWS) which quantifies how process power varies locally over time and scale. We show how the EWS may be rigorously estimated by a smoothed wavelet periodogram and how both these quantities may be inverted to provide an estimable time-localized autocovariance. We illustrate our theory with a pedagogical example based on discrete non-decimated Haar wavelets and also a real medical time series example.  相似文献   

7.
Here we consider wavelet-based identification and estimation of a censored nonparametric regression model via block thresholding methods and investigate their asymptotic convergence rates. We show that these estimators, based on block thresholding of empirical wavelet coefficients, achieve optimal convergence rates over a large range of Besov function classes, and in particular enjoy those rates without the extraneous logarithmic penalties that are usually suffered by term-by-term thresholding methods. This work is extension of results in Li et al. (2008). The performance of proposed estimator is investigated by a numerical study.  相似文献   

8.
We discuss a Bayesian formalism which gives rise to a type of wavelet threshold estimation in nonparametric regression. A prior distribution is imposed on the wavelet coefficients of the unknown response function, designed to capture the sparseness of wavelet expansion that is common to most applications. For the prior specified, the posterior median yields a thresholding procedure. Our prior model for the underlying function can be adjusted to give functions falling in any specific Besov space. We establish a relationship between the hyperparameters of the prior model and the parameters of those Besov spaces within which realizations from the prior will fall. Such a relationship gives insight into the meaning of the Besov space parameters. Moreover, the relationship established makes it possible in principle to incorporate prior knowledge about the function's regularity properties into the prior model for its wavelet coefficients. However, prior knowledge about a function's regularity properties might be difficult to elicit; with this in mind, we propose a standard choice of prior hyperparameters that works well in our examples. Several simulated examples are used to illustrate our method, and comparisons are made with other thresholding methods. We also present an application to a data set that was collected in an anaesthesiological study.  相似文献   

9.
This paper considers the problem of Bayesian automatic polynomial wavelet regression (PWR). We propose three different Bayesian methods based on integrated likelihood, conditional empirical Bayes, and reversible jump Markov chain Monte Carlo (MCMC). From the simulation results, we find that the proposed methods are similar to or superior to the existing ones.  相似文献   

10.
Practical Bayesian data analysis involves manipulating and summarizing simulations from the posterior distribution of the unknown parameters. By manipulation we mean computing posterior distributions of functions of the unknowns, and generating posterior predictive distributions. The results need to be summarized both numerically and graphically. We introduce, and implement in R, an object-oriented programming paradigm based on a random variable object type that is implicitly represented by simulations. This makes it possible to define vector and array objects that may contain both random and deterministic quantities, and syntax rules that allow to treat these objects like any numeric vectors or arrays, providing a solution to various problems encountered in Bayesian computing involving posterior simulations. We illustrate the use of this new programming environment with examples of Bayesian computing, demonstrating missing-value imputation, nonlinear summary of regression predictions, and posterior predictive checking.  相似文献   

11.
This study provides quantitative evidence of the professional impact of the Bayesian viewpoint as measured by the percentage of pages devoted to Bayesian topics in econometrics textbooks and leading econometrics and statistics journals.  相似文献   

12.
This paper explores the use of data augmentation in settings beyond the standard Bayesian one. In particular, we show that, after proposing an appropriate generalised data-augmentation principle, it is possible to extend the range of sampling situations in which fiducial methods can be applied by constructing Markov chains whose stationary distributions represent valid posterior inferences on model parameters. Some properties of these chains are presented and a number of open questions are discussed. We also use the approach to draw out connections between classical and Bayesian approaches in some standard settings.  相似文献   

13.
Summary.  A typical microarray experiment attempts to ascertain which genes display differential expression in different samples. We model the data by using a two-component mixture model and develop an empirical Bayesian thresholding procedure, which was originally introduced for thresholding wavelet coefficients, as an alternative to the existing methods for determining differential expression across thousands of genes. The method is built on sound theoretical properties and has easy computer implementation in the R statistical package. Furthermore, we consider improvements to the standard empirical Bayesian procedure when replication is present, to increase the robustness and reliability of the method. We provide an introduction to microarrays for those who are unfamilar with the field and the proposed procedure is demonstrated with applications to two-channel complementary DNA microarray experiments.  相似文献   

14.
In this article, we introduce a wavelet threshold estimator to estimate multinomial probabilities. The advantages of the estimator are its adaptability to the roughness and sparseness of the data. The asymptotic behavior of the estimator is investigated through an often-used criteria: the mean sum of squared error (MSSE). We show that the MSSE of the estimator achieves the optimal rate of convergence. Its performance on finite samples is examined through simulation studies which show favorable results for the new estimator over the commonly used kernel estimator.  相似文献   

15.
Summary. Radiocommunications signals pose particular problems in the context of statistical signal processing. This is because short-term fluctuations (noise) are a consequence of atmospheric effects whose characteristics vary in both the short and the longer term. We contrast traditional time domain and frequency domain filters with wavelet methods. We also propose an iterative wavelet procedure which appears to provide benefits over existing wavelet methods.  相似文献   

16.
Suppose in a distribution problem, the sample information W is split into two pieces W 1 and W 2, and the parameters involved are split into two sets, π containing the parameters of interest, and θ containing nuisance parameters. It is shown that, under certain conditions, the posterior distribution of π does not depend on the data W 2, which can thus be ignored. This also has consequences for the predictive distribution of future (or missing) observations. In fact, under similar conditions, the predictive distributions using W or just W 1 are identical.  相似文献   

17.
We measure the local sensitivity of a posterior expectation with respect to the prior by computing the norm of the Fréchet derivative of the posterior with respect to the prior over several different classes of measures. We compute the derivative of the posterior upper expectation when the prior varies in a restricted ?-contamination class. A bound on the global sensitivity of a class of priors is obtained. As an application, we show that of all sets with posterior probability 1 — α, the likelihood region minimizes the norm of the Fréchet derivative over the ?-contamination class and so is, in some sense, the most robust region with this posterior probability. But there exist counterexamples to this result for other classes of priors.  相似文献   

18.
We introduce two classes of multivariate log-skewed distributions with normal kernel: the log canonical fundamental skew-normal (log-CFUSN) and the log unified skew-normal. We also discuss some properties of the log-CFUSN family of distributions. These new classes of log-skewed distributions include the log-normal and multivariate log-skew normal families as particular cases. We discuss some issues related to Bayesian inference in the log-CFUSN family of distributions, mainly we focus on how to model the prior uncertainty about the skewing parameter. Based on the stochastic representation of the log-CFUSN family, we propose a data augmentation strategy for sampling from the posterior distributions. This proposed family is used to analyse the US national monthly precipitation data. We conclude that a high-dimensional skewing function lead to a better model fit.  相似文献   

19.
Abstract

An improved forecasting model by merging two different computational models in predicting future volatility was proposed. The model integrates wavelet and EGARCH model where the pre-processing activity based on wavelet transform is performed with de-noising technique to eliminate noise in observed signal. The denoised signal is then feed into EGARCH model to forecast the volatility. The predictive capability of the proposed model is compared with the existing EGARCH model. The results show that the hybrid model has increased the accuracy of forecasting future volatility.  相似文献   

20.
The main object of Bayesian statistical inference is the determination of posterior distributions. Sometimes these laws are given for quantities devoid of empirical value. This serious drawback vanishes when one confines oneself to considering a finite horizon framework. However, assuming infinite exchangeability gives rise to fairly tractable a posteriori quantities, which is very attractive in applications. Hence, with a view to a reconciliation between these two aspects of the Bayesian way of reasoning, in this paper we provide quantitative comparisons between posterior distributions of finitary parameters and posterior distributions of allied parameters appearing in usual statistical models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号