首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

This paper proposes an exponential class of dynamic binary choice panel data models for the analysis of short T (time dimension) large N (cross section dimension) panel data sets that allow for unobserved heterogeneity (fixed effects) to be arbitrarily correlated with the covariates. The paper derives moment conditions that are invariant to the fixed effects which are then used to identify and estimate the parameters of the model. Accordingly, generalized method of moments (GMM) estimators are proposed that are consistent and asymptotically normally distributed at the root-N rate. We also study the conditional likelihood approach and show that under exponential specification, it can identify the effect of state dependence but not the effects of other covariates. Monte Carlo experiments show satisfactory finite sample performance for the proposed estimators and investigate their robustness to misspecification.  相似文献   

2.
This article introduces the appropriate within estimators for the most frequently used three-dimensional fixed effects panel data models. It analyzes the behavior of these estimators in the cases of no self-flow data, unbalanced data, and dynamic autoregressive models. The main results are then generalized for higher dimensional panel data sets as well.  相似文献   

3.
4.
Abstract

The locally weighted censored quantile regression approach is proposed for panel data models with fixed effects, which allows for random censoring. The resulting estimators are obtained by employing the fixed effects quantile regression method. The weights are selected either parametrically, semi-parametrically or non-parametrically. The large panel data asymptotics are used in an attempt to cope with the incidental parameter problem. The consistency and limiting distribution of the proposed estimator are also derived. The finite sample performance of the proposed estimators are examined via Monte Carlo simulations.  相似文献   

5.
This paper considers the estimation of Cobb-Douglas production functions using panel data covering a large sample of companies observed for a small number of time periods. GMM estimatorshave been found to produce large finite-sample biases when using the standard first-differenced estimator. These biases can be dramatically reduced by exploiting reasonable stationarity restrictions on the initial conditions process. Using data for a panel of R&Dperforming US manufacturing companies we find that the additional instruments used in our extended GMM estimator yield much more reasonable parameter estimates.  相似文献   

6.
This paper considers the estimation of Cobb-Douglas production functions using panel data covering a large sample of companies observed for a small number of time periods. GMM estimatorshave been found to produce large finite-sample biases when using the standard first-differenced estimator. These biases can be dramatically reduced by exploiting reasonable stationarity restrictions on the initial conditions process. Using data for a panel of R&Dperforming US manufacturing companies we find that the additional instruments used in our extended GMM estimator yield much more reasonable parameter estimates.  相似文献   

7.
We develop a hierarchical Bayesian approach for inference in random coefficient dynamic panel data models. Our approach allows for the initial values of each unit's process to be correlated with the unit-specific coefficients. We impose a stationarity assumption for each unit's process by assuming that the unit-specific autoregressive coefficient is drawn from a logitnormal distribution. Our method is shown to have favorable properties compared to the mean group estimator in a Monte Carlo study. We apply our approach to analyze energy and protein intakes among individuals from the Philippines.  相似文献   

8.
This paper studies penalized quantile regression for dynamic panel data with fixed effects, where the penalty involves l1 shrinkage of the fixed effects. Using extensive Monte Carlo simulations, we present evidence that the penalty term reduces the dynamic panel bias and increases the efficiency of the estimators. The underlying intuition is that there is no need to use instrumental variables for the lagged dependent variable in the dynamic panel data model without fixed effects. This provides an additional use for the shrinkage models, other than model selection and efficiency gains. We propose a Bayesian information criterion based estimator for the parameter that controls the degree of shrinkage. We illustrate the usefulness of the novel econometric technique by estimating a “target leverage” model that includes a speed of capital structure adjustment. Using the proposed penalized quantile regression model the estimates of the adjustment speeds lie between 3% and 44% across the quantiles, showing strong evidence that there is substantial heterogeneity in the speed of adjustment among firms.  相似文献   

9.
The paper analyses the biasing effect of anonymising micro data by multiplicative stochastic noise on the within estimation of a linear panel model. In short panels, additional bias results from serially correlated regressors. Results in this paper are related to the project “Firms’ Panel Data and Factual Anonymisation,” which is financed by Federal Ministry of Education and Research. We would like to thank the anonymous referees for helpful comments.  相似文献   

10.
This article extends the spatial panel data regression with fixed-effects to the case where the regression function is partially linear and some regressors may be endogenous or predetermined. Under the assumption that the spatial weighting matrix is strictly exogenous, we propose a sieve two stage least squares (S2SLS) regression. Under some sufficient conditions, we show that the proposed estimator for the finite dimensional parameter is root-N consistent and asymptotically normally distributed and that the proposed estimator for the unknown function is consistent and also asymptotically normally distributed but at a rate slower than root-N. Consistent estimators for the asymptotic variances of the proposed estimators are provided. A small scale simulation study is conducted, and the simulation results show that the proposed procedure has good finite sample performance.  相似文献   

11.
Observations for a number of cross-sectional units over time have become increasingly available. The new data sources enable econometricians to construct and test more complicated behavioral models than a single cross sectional or time series data set would allow. The availability of new data sources, however, also raises new issues. In this paper we review some basic econo- metric methods that have been used to analyze such data sets. We also indicate areas of research where panel data may be useful.  相似文献   

12.
Benefits and limitations of panel data   总被引:6,自引:0,他引:6  
Observations for a number of cross-sectional units over time have become increasingly available. The new data sources enable econometricians to construct and test more complicated behavioral models than a single cross sectional or time series data set would allow. The availability of new data sources, however, also raises new issues. In this paper we review some basic econo- metric methods that have been used to analyze such data sets. We also indicate areas of research where panel data may be useful.  相似文献   

13.
The existing studies on spatial dynamic panel data model (SDPDM) mainly focus on the normality assumption of response variables and random effects. This assumption may be inappropriate in some applications. This paper proposes a new SDPDM by assuming that response variables and random effects follow the multivariate skew-normal distribution. A Markov chain Monte Carlo algorithm is developed to evaluate Bayesian estimates of unknown parameters and random effects in skew-normal SDPDM by combining the Gibbs sampler and the Metropolis–Hastings algorithm. A Bayesian local influence analysis method is developed to simultaneously assess the effect of minor perturbations to the data, priors and sampling distributions. Simulation studies are conducted to investigate the finite-sample performance of the proposed methodologies. An example is illustrated by the proposed methodologies.  相似文献   

14.
We propose an easy to derive and simple to compute approximate least squares or maximum likelihood estimator for nonlinear errors-in-variables models that does not require the knowledge of the conditional density of the latent variables given the observables. Specific examples and Monte Carlo studies demonstrate that the bias of this approximate estimator is small even when the magnitude of the variance of measurement errors to the variance of measured covariates is large. Cheng Hsiao and Qing Wang's work was supported in part by National Science Foundation grant SeS91-22481 and SBR94-09540. Liqun Wang gratefully acknowledges the financial support from Swiss National Science Foundation. We wish to thank Professor H. Schneeweiss and a referee for helpful comments and suggestions.  相似文献   

15.
Classical omnibus and more recent methods are adapted to panel data situations in order to jointly test for normality of the error components. The test statistics incorporate either the empirical distribution function or the empirical characteristic function, these functions resulting from estimation of the fixed and random components. Monte Carlo results show that the new procedure based on the empirical characteristic function compares favorably with classical methods.  相似文献   

16.
We propose models to analyze animal growth data with the aim of estimating and predicting quantities of biological and economical interest such as the maturing rate and asymptotic weight. It is also studied the effect of environmental factors of relevant influence in the growth process. The models considered in this paper are based on an extension and specialization of the dynamic hierarchical model (Gamerman & Migon, 1993) to a non–linear growth curve setting, where some of the growth curve parameters are considered exchangeable among the units. The inference for these models are approximate conjugate analysis based on Taylor series expansions and linear Bayes procedures  相似文献   

17.
In this paper, we consider a partially linear panel data model with nonstationarity and certain cross-sectional dependence. Accounting for the explosive feature of the nonstationary time series, we particularly employ Hermite orthogonal functions in this study. Under a general spatial error dependence structure, we then establish some consistent closed-form estimates for both the unknown parameters and the unknown functions for the cases where N and T go jointly to infinity. Rates of convergence and asymptotic normalities are established for the proposed estimators. Both the finite sample performance and the empirical applications show that the proposed estimation methods work well.  相似文献   

18.
In this paper, we consider inferences in a binary dynamic mixed model. The existing estimation approaches mainly estimate the regression effects and the dynamic dependence parameters either through the estimation of the random effects or by avoiding the random effects technically. Under the assumption that the random effects follow a Gaussian distribution, we propose a generalized quasilikelihood (GQL) approach for the estimation of the parameters of the dynamic mixed models. The proposed approach is computationally less cumbersome than the exact maximum likelihood (ML) approach. We also carry out the GQL estimation under two competitive, namely, probit and logit mixed models, and discuss both the asymptotic and small-sample behaviour of their estimators.  相似文献   

19.
ABSTRACT

This paper considers panel data models with fixed effects which have grouped patterns with unknown group membership. A two-stage estimation (TSE) procedure is developed to improve the properties of the GFE estimators of common parameters when the time span is small. Firstly, the common parameters are estimated. Subsequently, the optimal group assignment and the estimators of group effects are obtained by the K-means algorithm. Monte Carlo results reveal that the TSE estimator has a much smaller bias than the GFE estimator when the values of difference between effects are moderately small or at high variance of the idiosyncratic error.  相似文献   

20.
Panel data with covariate measurement error appear frequently in various studies. Due to the sampling design and/or missing data, panel data are often unbalanced in the sense that panels have different sizes. For balanced panel data (i.e., panels having the same size), there exists a generalized method of moments (GMM) approach for adjusting covariate measurement error, which does not require additional validation data. This paper extends the GMM approach of adjusting covariate measurement error to unbalanced panel data. Two health related longitudinal surveys are used to illustrate the implementation of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号