首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of the Cormack-Jolly-Seber model under a standard sampling scheme of one sample per time period, when the Jolly-Seber assumption that all emigration is permanent does not hold, leads to the confounding of temporary emigration probabilities with capture probabilities. This biases the estimates of capture probability when temporary emigration is a completely random process, and both capture and survival probabilities when there is a temporary trap response in temporary emigration, or it is Markovian. The use of secondary capture samples over a shorter interval within each period, during which the population is assumed to be closed (Pollock's robust design), provides a second source of information on capture probabilities. This solves the confounding problem, and thus temporary emigration probabilities can be estimated. This process can be accomplished in an ad hoc fashion for completely random temporary emigration and to some extent in the temporary trap response case, but modelling the complete sampling process provides more flexibility and permits direct estimation of variances. For the case of Markovian temporary emigration, a full likelihood is required.  相似文献   

2.
Pradel's (1996) temporal symmetry model permitting direct estimation and modelling of population growth rate, u i , provides a potentially useful tool for the study of population dynamics using marked animals. Because of its recent publication date, the approach has not seen much use, and there have been virtually no investigations directed at robustness of the resulting estimators. Here we consider several potential sources of bias, all motivated by specific uses of this estimation approach. We consider sampling situations in which the study area expands with time and present an analytic expression for the bias in u i We next consider trap response in capture probabilities and heterogeneous capture probabilities and compute large-sample and simulation-based approximations of resulting bias in u i . These approximations indicate that trap response is an especially important assumption violation that can produce substantial bias. Finally, we consider losses on capture and emphasize the importance of selecting the estimator for u i that is appropriate to the question being addressed. For studies based on only sighting and resighting data, Pradel's (1996) u i ' is the appropriate estimator.  相似文献   

3.
The estimation of survival rates from analysis of recapture of individually marked animals assumes that all individuals are equally likely to be re-encountered. This assumption is frequently violated in natural populations due to movements to and from the sampling area. We evaluated potential sources of heterogeneity using data from recaptures of 36000 individually marked female lesser snow geese, Anser c. caerulescens , from an expanding population in northern Manitoba, Canada. By stratifying individuals according to marking age and origin (hatched at the colony or not), we assessed the degree to which variation in apparent survival reflected permanent or temporary differences in emigration and effects of handling. In general, for birds ringed as adults, estimated apparent survival rates were significantly lower during the first year after ringing than in subsequent years. By comparing birds ringed as adults (classified by origin) with those ringed as goslings, we were able to demonstrate that these differences are not due to permanent emigration from the colony by transient individuals or heterogeneity of individual capture probability, but more likely reflect differences among individuals in their response to initial marking. Approximately 25% of birds permanently emigrate from the sampling area following marking.  相似文献   

4.
The estimation of survival rates from analysis of recapture of individually marked animals assumes that all individuals are equally likely to be re-encountered. This assumption is frequently violated in natural populations due to movements to and from the sampling area. We evaluated potential sources of heterogeneity using data from recaptures of 36000 individually marked female lesser snow geese, Anser c. caerulescens , from an expanding population in northern Manitoba, Canada. By stratifying individuals according to marking age and origin (hatched at the colony or not), we assessed the degree to which variation in apparent survival reflected permanent or temporary differences in emigration and effects of handling. In general, for birds ringed as adults, estimated apparent survival rates were significantly lower during the first year after ringing than in subsequent years. By comparing birds ringed as adults (classified by origin) with those ringed as goslings, we were able to demonstrate that these differences are not due to permanent emigration from the colony by transient individuals or heterogeneity of individual capture probability, but more likely reflect differences among individuals in their response to initial marking. Approximately 25% of birds permanently emigrate from the sampling area following marking.  相似文献   

5.
Distance sampling and capture–recapture are the two most widely used wildlife abundance estimation methods. capture–recapture methods have only recently incorporated models for spatial distribution and there is an increasing tendency for distance sampling methods to incorporated spatial models rather than to rely on partly design-based spatial inference. In this overview we show how spatial models are central to modern distance sampling and that spatial capture–recapture models arise as an extension of distance sampling methods. Depending on the type of data recorded, they can be viewed as particular kinds of hierarchical binary regression, Poisson regression, survival or time-to-event models, with individuals’ locations as latent variables and a spatial model as the latent variable distribution. Incorporation of spatial models in these two methods provides new opportunities for drawing explicitly spatial inferences. Areas of likely future development include more sophisticated spatial and spatio-temporal modelling of individuals’ locations and movements, new methods for integrating spatial capture–recapture and other kinds of ecological survey data, and methods for dealing with the recapture uncertainty that often arise when “capture” consists of detection by a remote device like a camera trap or microphone.  相似文献   

6.
In this paper, we derive the probabilities that four chosen sampling schemes will detect a circular patch of organisms whose location is at some random location in the study area. We also describe simulations which indicate the variation of patch detection probabilities for different realizations of the sampling design. We comment briefly on how probabilities would be affected by multiple and different shaped patches. Our results are a useful guide for practitioners when choosing a design and an appropriate sampling intensity.  相似文献   

7.
The linear discriminant function (LDF) is known to be optimal in the sense of achieving an optimal error rate when sampling from multivariate normal populations with equal covariance matrices. Use of the LDF in nonnormal situations is known to lead to some strange results. This paper will focus on an evaluation of misclassification probabilities when the power transformation could have been used to achieve at least approximate normality and equal covariance matrices in the sampled populations for the distribution of the observed random variables. Attention is restricted to the two-population case with bivariate distributions.  相似文献   

8.
《统计学通讯:理论与方法》2012,41(16-17):3278-3300
Under complex survey sampling, in particular when selection probabilities depend on the response variable (informative sampling), the sample and population distributions are different, possibly resulting in selection bias. This article is concerned with this problem by fitting two statistical models, namely: the variance components model (a two-stage model) and the fixed effects model (a single-stage model) for one-way analysis of variance, under complex survey design, for example, two-stage sampling, stratification, and unequal probability of selection, etc. Classical theory underlying the use of the two-stage model involves simple random sampling for each of the two stages. In such cases the model in the sample, after sample selection, is the same as model for the population; before sample selection. When the selection probabilities are related to the values of the response variable, standard estimates of the population model parameters may be severely biased, leading possibly to false inference. The idea behind the approach is to extract the model holding for the sample data as a function of the model in the population and of the first order inclusion probabilities. And then fit the sample model, using analysis of variance, maximum likelihood, and pseudo maximum likelihood methods of estimation. The main feature of the proposed techniques is related to their behavior in terms of the informativeness parameter. We also show that the use of the population model that ignores the informative sampling design, yields biased model fitting.  相似文献   

9.
In a production process, sequence of observations related to the quality of a process need not be independent. In such situations, control charts based on the assumption of independence of the observations are not appropriate. When the characteristic under study is qualitative, the Markovian model serves as a simple model to account for the dependency of the observations. In this article, we develop two attribute control charts for a Markovian dependent process: the first is based on controlling the error probabilities; the second is based on minimizing the average time to get a correct signal.

The charts are developed under uniform sampling. Under uniform sampling, the two consecutive samples are far enough apart, so that for all practical purposes, two consecutive samples can be considered as if they are being independent. Optimal values of the design parameters of both the control charts are obtained. A procedure to estimate the values of the in-control parameters is also described. The chart's performance is evaluated using the probability of detecting shift. When we implement the proposed charts for the data simulated under given manufacturing environments, the charts exhibit the desired properties of error probabilities and average time to signal.  相似文献   

10.
本文系统介绍了永久随机数法样本轮换理论,讨论了在等概率、不等概率抽样条件下永久随机数法样本轮换的具体应用,并将其与传统的子样本轮换方法进行比较,希望能够促进永久随机数法样本轮换在经常性抽样调查中的应用和推广。  相似文献   

11.
Matrix-analytic Models and their Analysis   总被引:2,自引:0,他引:2  
We survey phase-type distributions and Markovian point processes, aspects of how to use such models in applied probability calculations and how to fit them to observed data. A phase-type distribution is defined as the time to absorption in a finite continuous time Markov process with one absorbing state. This class of distributions is dense and contains many standard examples like all combinations of exponential in series/parallel. A Markovian point process is governed by a finite continuous time Markov process (typically ergodic), such that points are generated at a Poisson intensity depending on the underlying state and at transitions; a main special case is a Markov-modulated Poisson process. In both cases, the analytic formulas typically contain matrix-exponentials, and the matrix formalism carried over when the models are used in applied probability calculations as in problems in renewal theory, random walks and queueing. The statistical analysis is typically based upon the EM algorithm, viewing the whole sample path of the background Markov process as the latent variable.  相似文献   

12.
Inverse probability weighting (IPW) can deal with confounding in non randomized studies. The inverse weights are probabilities of treatment assignment (propensity scores), estimated by regressing assignment on predictors. Problems arise if predictors can be missing. Solutions previously proposed include assuming assignment depends only on observed predictors and multiple imputation (MI) of missing predictors. For the MI approach, it was recommended that missingness indicators be used with the other predictors. We determine when the two MI approaches, (with/without missingness indicators) yield consistent estimators and compare their efficiencies.We find that, although including indicators can reduce bias when predictors are missing not at random, it can induce bias when they are missing at random. We propose a consistent variance estimator and investigate performance of the simpler Rubin’s Rules variance estimator. In simulations we find both estimators perform well. IPW is also used to correct bias when an analysis model is fitted to incomplete data by restricting to complete cases. Here, weights are inverse probabilities of being a complete case. We explain how the same MI methods can be used in this situation to deal with missing predictors in the weight model, and illustrate this approach using data from the National Child Development Survey.  相似文献   

13.
ABSTRACT

This paper considers the use of stratified random sampling with proportional as well as Neyman allocations to unrelated question randomized response strategy. It has been shown that, for the prior information given, our new model is more efficient in terms of variance (in the case of completely truthful reporting) and mean square error (in case of less than completely truthful reporting). Numerical illustrations are also given in support of the present study.  相似文献   

14.
Transition probabilities can be estimated when capture-recapture data are available from each stratum on every capture occasion using a conditional likelihood approach with the Arnason-Schwarz model. To decompose the fundamental transition probabilities into derived parameters, all movement probabilities must sum to 1 and all individuals in stratum r at time i must have the same probability of survival regardless of which stratum the individual is in at time i + 1. If movement occurs among strata at the end of a sampling interval, survival rates of individuals from the same stratum are likely to be equal. However, if movement occurs between sampling periods and survival rates of individuals from the same stratum are not the same, estimates of stratum survival can be confounded with estimates of movement causing both estimates to be biased. Monte Carlo simulations were made of a three-sample model for a population with two strata using SURVIV. When differences were created in transition-specific survival rates for survival rates from the same stratum, relative bias was <2% in estimates of stratum survival and capture rates but relative bias in movement rates was much higher and varied. The magnitude of the relative bias in the movement estimate depended on the relative difference between the transition-specific survival rates and the corresponding stratum survival rate. The direction of the bias in movement rate estimates was opposite to the direction of this difference. Increases in relative bias due to increasing heterogeneity in probabilities of survival, movement and capture were small except when survival and capture probabilities were positively correlated within individuals.  相似文献   

15.
We propose a randomized minima–maxima nomination (RMMN) sampling design for use in finite populations. We derive the first- and second-order inclusion probabilities for both with and without replacement variations of the design. The inclusion probabilities for the without replacement variation are derived using a non-homogeneous Markov process. The design is simple to implement and results in simple and easy to calculate estimators and variances. It generalizes maxima nomination sampling for use in finite populations and includes some other sampling designs as special cases. We provide some optimality results and show that, in the context of finite population sampling, maxima nomination sampling is not generally the optimum design to follow. We also show, through numerical examples and a case study, that the proposed design can result in significant improvements in efficiency compared to simple random sampling without replacement designs for a wide choice of population types. Finally, we describe a bootstrap method for choosing values of the design parameters.  相似文献   

16.
Superpopulation models are proposed that should be appropriate for modelling sample-based audits of Medicare payments and other overpayment situations. Simulations are used to estimate the coverage probabilities of confidence intervals formed using the standard Stratified Expansion and Combined Ratio estimators of the total. Despite severe departures from the usual model of normal deviations, these methods have actual coverage probabilities reasonably close to the nominal level specified by the US government's sampling guidelines. An exception occurs when all claims from a single sampling unit are either completely allowed, or completely denied, and for this situation an alternative is explored. A balanced sampling design is also examined, but shown to make no improvement over ordinary stratified samples used in conjunction with ratio estimates.  相似文献   

17.
Recognizing that the efficiency in relative risk estimation for the Cox proportional hazards model is largely constrained by the total number of cases, Prentice (1986) proposed the case-cohort design in which covariates are measured on all cases and on a random sample of the cohort. Subsequent to Prentice, other methods of estimation and sampling have been proposed for these designs. We formalize an approach to variance estimation suggested by Barlow (1994), and derive a robust variance estimator based on the influence function. We consider the applicability of the variance estimator to all the proposed case-cohort estimators, and derive the influence function when known sampling probabilities in the estimators are replaced by observed sampling fractions. We discuss the modifications required when cases are missing covariate information. The missingness may occur by chance, and be completely at random; or may occur as part of the sampling design, and depend upon other observed covariates. We provide an adaptation of S-plus code that allows estimating influence function variances in the presence of such missing covariates. Using examples from our current case-cohort studies on esophageal and gastric cancer, we illustrate how our results our useful in solving design and analytic issues that arise in practice.  相似文献   

18.
Capture–recapture experiments are commonly used to estimate the size of a closed population. However, the associated estimators of the population size are well known to be highly sensitive to misspecification of the capture probabilities. To address this, we present a general semiparametric framework for the analysis of capture–recapture experiments when the capture probability depends on individual characteristics, time effects and behavioural response. This generalizes well‐known general parametric capture–recapture models and extends previous semiparametric models in which there is no time dependence or behavioural response. The method is evaluated in simulations and applied to two real data sets.  相似文献   

19.
The case-crossover design has been used by many researchers to study the transient effect of an exposure on the risk of a rare outcome. In a case-crossover design, only cases are sampled and each case will act as his/her own control. The time of failure acts as the case and non failure times act as the controls. Case-crossover designs have frequently been used to study the effect of environmental exposures on rare diseases or mortality. Time trends and seasonal confounding may be present in environmental studies and thus need to be controlled for by the sampling design. Several sampling methods are available for this purpose. In time-stratified sampling, disjoint strata of equal size are formed and the control times within the case stratum are used for comparison. The random semi-symmetric sampling design randomly selects a control time for comparison from two possible control times. The fixed semi-symmetric sampling design is a modified version of the random semi-symmetric sampling design that removes the random selection. Simulations show that the fixed semi-symmetric sampling design improves the variance of the random semi-symmetric sampling estimator by at least 35% for the exposures we studied. We derive expressions for the asymptotic variance of risk estimators for these designs, and show, that while the designs are not theoretically equivalent, in many realistic situations, the random semi-symmetric sampling design has similar efficiency to a time-stratified sampling design of size two and the fixed semi-symmetric sampling design has similar efficiency to a time-stratified sampling design of size three.  相似文献   

20.
Statistical distributions generated from any J- or U-shaped random variables are cumbersome to derive if not completely indefinable and thus are unavailable analytically because of the singularities at the tails of the basic random variable. This paper presents a computational method for providing a numerical convolution derived from a basic U-shaped random variable composed of a continuous part mixed with (or contaminated by) a discrete part at the tails. The J-shaped sampling distribution case is implied as a special case. Though the computations are based on a background Normal Distribution, it can be generalized on any other distribution.Such distributions will open up an area of sampling distributions of mixed random variables that are not elaborately covered in textbooks dealing with the theory of distributions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号