首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. This article studies a method to estimate the parameters governing the distribution of a stationary marked Gibbs point process. This procedure, known as the Takacs–Fiksel method, is based on the estimation of the left and right hand sides of the Georgii–Nguyen–Zessin formula and leads to a family of estimators due to the possible choices of test functions. We propose several examples illustrating the interest and flexibility of this procedure. We also provide sufficient conditions based on the model and the test functions to derive asymptotic properties (consistency and asymptotic normality) of the resulting estimator. The different assumptions are discussed for exponential family models and for a large class of test functions. A short simulation study is proposed to assess the correctness of the methodology and the asymptotic results.  相似文献   

2.
We establish a central limit theorem for multivariate summary statistics of nonstationary α‐mixing spatial point processes and a subsampling estimator of the covariance matrix of such statistics. The central limit theorem is crucial for establishing asymptotic properties of estimators in statistics for spatial point processes. The covariance matrix subsampling estimator is flexible and model free. It is needed, for example, to construct confidence intervals and ellipsoids based on asymptotic normality of estimators. We also provide a simulation study investigating an application of our results to estimating functions.  相似文献   

3.
This paper discusses regression analysis of panel count data with dependent observation and dropout processes. For the problem, a general mean model is presented that can allow both additive and multiplicative effects of covariates on the underlying point process. In addition, the proportional rates model and the accelerated failure time model are employed to describe possible covariate effects on the observation process and the dropout or follow‐up process, respectively. For estimation of regression parameters, some estimating equation‐based procedures are developed and the asymptotic properties of the proposed estimators are established. In addition, a resampling approach is proposed for estimating a covariance matrix of the proposed estimator and a model checking procedure is also provided. Results from an extensive simulation study indicate that the proposed methodology works well for practical situations, and it is applied to a motivating set of real data.  相似文献   

4.
Bartlett correction constitutes one of the attractive features of empirical likelihood because it enables the construction of confidence regions for parameters with improved coverage probabilities. We study the Bartlett correction of spatial frequency domain empirical likelihood (SFDEL) based on general spectral estimating functions for regularly spaced spatial data. This general formulation can be applied to testing and estimation problems in spatial analysis, for example testing covariance isotropy, testing covariance separability as well as estimating the parameters of spatial covariance models. We show that the SFDEL is Bartlett correctable. In particular, the improvement in coverage accuracies of the Bartlett‐corrected confidence regions depends on the underlying spatial structures. The Canadian Journal of Statistics 47: 455–472; 2019 © 2019 Statistical Society of Canada  相似文献   

5.
This paper describes a technique for computing approximate maximum pseudolikelihood estimates of the parameters of a spatial point process. The method is an extension of Berman & Turner's (1992) device for maximizing the likelihoods of inhomogeneous spatial Poisson processes. For a very wide class of spatial point process models the likelihood is intractable, while the pseudolikelihood is known explicitly, except for the computation of an integral over the sampling region. Approximation of this integral by a finite sum in a special way yields an approximate pseudolikelihood which is formally equivalent to the (weighted) likelihood of a loglinear model with Poisson responses. This can be maximized using standard statistical software for generalized linear or additive models, provided the conditional intensity of the process takes an 'exponential family' form. Using this approach a wide variety of spatial point process models of Gibbs type can be fitted rapidly, incorporating spatial trends, interaction between points, dependence on spatial covariates, and mark information.  相似文献   

6.
Many neuroscience experiments record sequential trajectories where each trajectory consists of oscillations and fluctuations around zero. Such trajectories can be viewed as zero-mean functional data. When there are structural breaks in higher-order moments, it is not always easy to spot these by mere visual inspection. Motivated by this challenging problem in brain signal analysis, we propose a detection and testing procedure to find the change point in functional covariance. The detection procedure is based on the cumulative sum statistics (CUSUM). The fully functional testing procedure relies on a null distribution which depends on infinitely many unknown parameters, though in practice only a finite number of these parameters can be included for the hypothesis test of the existence of change point. This paper provides some theoretical insights on the influence of the number of parameters. Meanwhile, the asymptotic properties of the estimated change point are developed. The effectiveness of the proposed method is numerically validated in simulation studies and an application to investigate changes in rat brain signals following an experimentally-induced stroke.  相似文献   

7.
The Bootstrap and Kriging Prediction Intervals   总被引:1,自引:0,他引:1  
Kriging is a method for spatial prediction that, given observations of a spatial process, gives the optimal linear predictor of the process at a new specified point. The kriging predictor may be used to define a prediction interval for the value of interest. The coverage of the prediction interval will, however, equal the nominal desired coverage only if it is constructed using the correct underlying covariance structure of the process. If this is unknown, it must be estimated from the data. We study the effect on the coverage accuracy of the prediction interval of substituting the true covariance parameters by estimators, and the effect of bootstrap calibration of coverage properties of the resulting 'plugin' interval. We demonstrate that plugin and bootstrap calibrated intervals are asymptotically accurate in some generality and that bootstrap calibration appears to have a significant effect in improving the rate of convergence of coverage error.  相似文献   

8.
Sample covariance matrices play a central role in numerous popular statistical methodologies, for example principal components analysis, Kalman filtering and independent component analysis. However, modern random matrix theory indicates that, when the dimension of a random vector is not negligible with respect to the sample size, the sample covariance matrix demonstrates significant deviations from the underlying population covariance matrix. There is an urgent need to develop new estimation tools in such cases with high‐dimensional data to recover the characteristics of the population covariance matrix from the observed sample covariance matrix. We propose a novel solution to this problem based on the method of moments. When the parametric dimension of the population spectrum is finite and known, we prove that the proposed estimator is strongly consistent and asymptotically Gaussian. Otherwise, we combine the first estimation method with a cross‐validation procedure to select the unknown model dimension. Simulation experiments demonstrate the consistency of the proposed procedure. We also indicate possible extensions of the proposed estimator to the case where the population spectrum has a density.  相似文献   

9.
Gibbs point processes (GPPs) constitute a large and flexible class of spatial point processes with explicit dependence between the points. They can model attractive as well as repulsive point patterns. Feature selection procedures are an important topic in high-dimensional statistical modeling. In this paper, a composite likelihood (in particular pseudo-likelihood) approach regularized with convex and nonconvex penalty functions is proposed to handle statistical inference for possibly high-dimensional inhomogeneous GPPs. We particularly investigate the setting where the number of covariates diverges as the domain of observation increases. Under some conditions provided on the spatial GPP and on penalty functions, we show that the oracle property, consistency and asymptotic normality hold. Our results also cover the low-dimensional case which fills a large gap in the literature. Through simulation experiments, we validate our theoretical results and finally, an application to a tropical forestry dataset illustrates the use of the proposed approach.  相似文献   

10.
We consider the problem of estimating the parameters of the covariance function of a stationary spatial random process. In spatial statistics, there are widely used parametric forms for the covariance functions, and various methods for estimating the parameters have been proposed in the literature. We develop a method for estimating the parameters of the covariance function that is based on a regression approach. Our method utilizes pairs of observations whose distances are closest to a value h>0h>0 which is chosen in a way that the estimated correlation at distance h is a predetermined value. We demonstrate the effectiveness of our procedure by simulation studies and an application to a water pH data set. Simulation studies show that our method outperforms all well-known least squares-based approaches to the variogram estimation and is comparable to the maximum likelihood estimation of the parameters of the covariance function. We also show that under a mixing condition on the random field, the proposed estimator is consistent for standard one parameter models for stationary correlation functions.  相似文献   

11.
Point process models are a natural approach for modelling data that arise as point events. In the case of Poisson counts, these may be fitted easily as a weighted Poisson regression. Point processes lack the notion of sample size. This is problematic for model selection, because various classical criteria such as the Bayesian information criterion (BIC) are a function of the sample size, n, and are derived in an asymptotic framework where n tends to infinity. In this paper, we develop an asymptotic result for Poisson point process models in which the observed number of point events, m, plays the role that sample size does in the classical regression context. Following from this result, we derive a version of BIC for point process models, and when fitted via penalised likelihood, conditions for the LASSO penalty that ensure consistency in estimation and the oracle property. We discuss challenges extending these results to the wider class of Gibbs models, of which the Poisson point process model is a special case.  相似文献   

12.
The classical spatial median is not affine‐equivariant, which often turns out to be an unfavourable property. In this paper, the asymptotic properties of an affine‐equivariant modification of the spatial median are investigated. It is shown that under some weak regularity conditions, the modified spatial median computed by means of the sample norming matrix is asymptotically equivalent to the one computed by means of the population norming matrix, which yields its asymptotic normality. A consistent estimate of the asymptotic covariance matrix of the modified spatial median is also presented. These results are implemented in a scheme, where the sample norm is determined by means of the sample Dümbgen scatter matrix. The results are utilized in the construction of affine‐invariant test statistics for testing the multi‐sample hypothesis of equality of location parameters. The performance of the proposed tests is demonstrated through a simulation study.  相似文献   

13.
ABSTRACT

This paper proposes a power-transformed linear quantile regression model for the residual lifetime of competing risks data. The proposed model can describe the association between any quantile of a time-to-event distribution among survivors beyond a specific time point and the covariates. Under covariate-dependent censoring, we develop an estimation procedure with two steps, including an unbiased monotone estimating equation for regression parameters and cumulative sum processes for the Box–Cox transformation parameter. The asymptotic properties of the estimators are also derived. We employ an efficient bootstrap method for the estimation of the variance–covariance matrix. The finite-sample performance of the proposed approaches are evaluated through simulation studies and a real example.  相似文献   

14.
Markov chain Monte Carlo (MCMC) algorithms for Bayesian computation for Gaussian process-based models under default parameterisations are slow to converge due to the presence of spatial- and other-induced dependence structures. The main focus of this paper is to study the effect of the assumed spatial correlation structure on the convergence properties of the Gibbs sampler under the default non-centred parameterisation and a rival centred parameterisation (CP), for the mean structure of a general multi-process Gaussian spatial model. Our investigation finds answers to many pertinent, but as yet unanswered, questions on the choice between the two. Assuming the covariance parameters to be known, we compare the exact rates of convergence of the two by varying the strength of the spatial correlation, the level of covariance tapering, the scale of the spatially varying covariates, the number of data points, the number and the structure of block updating of the spatial effects and the amount of smoothness assumed in a Matérn covariance function. We also study the effects of introducing differing levels of geometric anisotropy in the spatial model. The case of unknown variance parameters is investigated using well-known MCMC convergence diagnostics. A simulation study and a real-data example on modelling air pollution levels in London are used for illustrations. A generic pattern emerges that the CP is preferable in the presence of more spatial correlation or more information obtained through, for example, additional data points or by increased covariate variability.  相似文献   

15.
We discuss the robustness and asymptotic behaviour of τ-estimators for multivariate location and scatter. We show that τ-estimators correspond to multivariate M-estimators defined by a weighted average of redescending ψ-functions, where the weights are adaptive. We prove consistency and asymptotic normality under weak assumptions on the underlying distribution, show that τ-estimators have a high breakdown point, and obtain the influence function at general distributions. In the special case of a location-scatter family, τ-estimators are asymptotically equivalent to multivariate S-estimators defined by means of a weighted ψ-function. This enables us to combine a high breakdown point and bounded influence with good asymptotic efficiency for the location and covariance estimator.  相似文献   

16.
Here we review nested relationships between models in the Matérn family of spatial models. The problem of comparing nested statistical models is straightforward in regular parametric problems via the likelihood ratio statistics and its asymptotic distribution. Here we examine the distribution of increments in residual log likelihood between nested spatial models when the null hypothesis is that the spatial structure is a convex combination of white noise and the de Wijs process, also known by its logarithmic covariance function. This study is carried out by simulation of spatial processes and the important aspects of this work include how to simulate a spatial process of order 0, the lack of strong bias in the estimates of variance components, and the validity of the usual asymptotic results for nested spatial models examined here.  相似文献   

17.
This work is concerned with the estimation of multi-dimensional regression and the asymptotic behavior of the test involved in selecting models. The main problem with such models is that we need to know the covariance matrix of the noise to get an optimal estimator. We show in this article that if we choose to minimize the logarithm of the determinant of the empirical error covariance matrix, then we get an asymptotically optimal estimator. Moreover, under suitable assumptions, we show that this cost function leads to a very simple asymptotic law for testing the number of parameters of an identifiable and regular regression model. Numerical experiments confirm the theoretical results.  相似文献   

18.
This paper considers the problem of sequential point estimation, under an appropriate loss function, of the location parameter when the errors form an autoregressive process with unknown scale and autoregressive parameters, A sequential procedure is developed and an asymptotic second order expansion is provided for the difference between expected stopping time and the optimal fixed sample size procedure. Also, the asymptotic normality of the stopping time is proved. Though the procedure Is asymptotically risk efficient, it. Is not clear whether it has bounded regret.  相似文献   

19.
This article investigates an efficient estimation method for a class of switching regressions based on the characteristic function (CF). We show that with the exponential weighting function, the CF-based estimator can be achieved from minimizing a closed form distance measure. Due to the availability of the analytical structure of the asymptotic covariance, an iterative estimation procedure is developed involving the minimization of a precision measure of the asymptotic covariance matrix. Numerical examples are illustrated via a set of Monte Carlo experiments examining the implementation, finite sample property and the efficiency of the proposed estimator.  相似文献   

20.
Takemura and Sheena [A. Takemura, Y. Sheena, Distribution of eigenvalues and eigenvectors of Wishart matrix when the population eigenvalues are infinitely dispersed and its application to minimax estimation of covariance matrix, J. Multivariate Anal. 94 (2005) 271–299] derived the asymptotic joint distribution of the eigenvalues and the eigenvectors of a Wishart matrix when the population eigenvalues become infinitely dispersed. They also showed necessary conditions for an estimator of the population covariance matrix to be tail minimax for typical loss functions by calculating the asymptotic risk of the estimator. In this paper, we further examine those distributions and risks by means of an asymptotic expansion. We obtain the asymptotic expansion of the distribution function of relevant elements of the sample eigenvalues and eigenvectors. We also derive the asymptotic expansion of the risk function of a scale and orthogonally equivariant estimator with respect to Stein’s loss. As an application, we prove non-minimaxity of Stein’s and Haff’s estimators, which has been an open problem for a long time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号