首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
Abstract. We introduce a class of Gibbs–Markov random fields built on regular tessellations that can be understood as discrete counterparts of Arak–Surgailis polygonal fields. We focus first on consistent polygonal fields, for which we show consistency, Markovianity and solvability by means of dynamic representations. Next, we develop disagreement loop as well as path creation and annihilation dynamics for their general Gibbsian modifications, which cover most lattice‐based Gibbs–Markov random fields subject to certain mild conditions. Applications to foreground–background image segmentation problems are discussed.  相似文献   

2.
Fitting Gaussian Markov Random Fields to Gaussian Fields   总被引:3,自引:0,他引:3  
This paper discusses the following task often encountered in building Bayesian spatial models: construct a homogeneous Gaussian Markov random field (GMRF) on a lattice with correlation properties either as present in some observed data, or consistent with prior knowledge. The Markov property is essential in designing computationally efficient Markov chain Monte Carlo algorithms to analyse such models. We argue that we can restate both tasks as that of fitting a GMRF to a prescribed stationary Gaussian field on a lattice when both local and global properties are important. We demonstrate that using the KullbackLeibler discrepancy often fails for this task, giving severely undesirable behaviour of the correlation function for lags outside the neighbourhood. We propose a new criterion that resolves this difficulty, and demonstrate that GMRFs with small neighbourhoods can approximate Gaussian fields surprisingly well even with long correlation lengths. Finally, we discuss implications of our findings for likelihood based inference for general Markov random fields when global properties are also important.  相似文献   

3.
The emerging field of cancer radiomics endeavors to characterize intrinsic patterns of tumor phenotypes and surrogate markers of response by transforming medical images into objects that yield quantifiable summary statistics to which regression and machine learning algorithms may be applied for statistical interrogation. Recent literature has identified clinicopathological association based on textural features deriving from gray-level co-occurrence matrices (GLCM) which facilitate evaluations of gray-level spatial dependence within a delineated region of interest. GLCM-derived features, however, tend to contribute highly redundant information. Moreover, when reporting selected feature sets, investigators often fail to adjust for multiplicities and commonly fail to convey the predictive power of their findings. This article presents a Bayesian probabilistic modeling framework for the GLCM as a multivariate object as well as describes its application within a cancer detection context based on computed tomography. The methodology, which circumvents processing steps and avoids evaluations of reductive and highly correlated feature sets, uses latent Gaussian Markov random field structure to characterize spatial dependencies among GLCM cells and facilitates classification via predictive probability. Correctly predicting the underlying pathology of 81% of the adrenal lesions in our case study, the proposed method outperformed current practices which achieved a maximum accuracy of only 59%. Simulations and theory are presented to further elucidate this comparison as well as ascertain the utility of applying multivariate Gaussian spatial processes to GLCM objects.  相似文献   

4.
The gamma process is a natural model for degradation processes in which deterioration is supposed to take place gradually over time in a sequence of tiny increments. When units or individuals are observed over time it is often apparent that they degrade at different rates, even though no differences in treatment or environment are present. Thus, in applying gamma-process models to such data, it is necessary to allow for such unexplained differences. In the present paper this is accomplished by constructing a tractable gamma-process model incorporating a random effect. The model is fitted to some data on crack growth and corresponding goodness-of-fit tests are carried out. Prediction calculations for failure times defined in terms of degradation level passages are developed and illustrated.  相似文献   

5.
Conditional simulation of max‐stable processes allows for the analysis of spatial extremes taking into account additional information provided by the conditions. Instead of observations at given sites as usually done, we consider a single condition given by a more general functional of the process as may occur in the context of climate models. As the problem turns out to be intractable analytically, we make use of Markov chain Monte Carlo methods to sample from the conditional distribution. Simulation studies indicate fast convergence of the Markov chains involved. In an application to precipitation data, the utility of the procedure as a tool to downscale climate data is demonstrated.  相似文献   

6.
Several results relating to the optimal prediction of regression coefficients and random variables under a general linear model with stochastic coefficients are presented. These results are then applied to the analysis of repeated sample surveys over time. In particular, if the finite population can be modelled by a superpopulation model, a fully efficient method for the analysis of repeated surveys is proposed.  相似文献   

7.
The problem of statistical calibration of a measuring instrument can be framed both in a statistical context as well as in an engineering context. In the first, the problem is dealt with by distinguishing between the ‘classical’ approach and the ‘inverse’ regression approach. Both of these models are static models and are used to estimate exact measurements from measurements that are affected by error. In the engineering context, the variables of interest are considered to be taken at the time at which you observe it. The Bayesian time series analysis method of Dynamic Linear Models can be used to monitor the evolution of the measures, thus introducing a dynamic approach to statistical calibration. The research presented employs a new approach to performing statistical calibration. A simulation study in the context of microwave radiometry is conducted that compares the dynamic model to traditional static frequentist and Bayesian approaches. The focus of the study is to understand how well the dynamic statistical calibration method performs under various signal-to-noise ratios, r.  相似文献   

8.
Traditional phylogenetic inference assumes that the history of a set of taxa can be explained by a tree. This assumption is often violated as some biological entities can exchange genetic material giving rise to non‐treelike events often called reticulations. Failure to consider these events might result in incorrectly inferred phylogenies. Phylogenetic networks provide a flexible tool which allows researchers to model the evolutionary history of a set of organisms in the presence of reticulation events. In recent years, a number of methods addressing phylogenetic network parameter estimation have been introduced. Some of them are based on the idea that a phylogenetic network can be defined as a directed acyclic graph. Based on this definition, we propose a Bayesian approach to the estimation of phylogenetic network parameters which allows for different phylogenies to be inferred at different parts of a multiple DNA alignment. The algorithm is tested on simulated data and applied to the ribosomal protein gene rps11 data from five flowering plants, where reticulation events are suspected to be present. The proposed approach can be applied to a wide variety of problems which aim at exploring the possibility of reticulation events in the history of a set of taxa.  相似文献   

9.
The work reviews theory of conditionally Gaussian distributions, especially so called theorems on normal correlation. Three theorems are given: the basic, the recursive, and the conditional theorem on normal correlation. They assume that (a,y), (a,x,y), or (a,y,z) has a Gaussian distribution, ussert that (a,y), (a,x,y), and (a,y,z), respectively, are Gaussian, and give formulas for the corresponding conditional mean vectors and variance covariance matrices. A proof is presented for the recursive and the conditional theorem.  相似文献   

10.
The paper considers the modelling of time series using a generalized additive model with first-order Markov structure and mixed transition density having a discrete component at zero and a continuous component with positive sample space. Such models have application, for example, in modelling daily occurrence and intensity of rainfall, and in modelling numbers and sizes of insurance claims. The paper shows how these methods extend the usual sinusoidal seasonal assumption in standard chain-dependent models by assuming a general smooth pattern of occurrence and intensity over time. These models can be fitted using standard statistical software. The methods of Grunwald & Jones (2000) can be used to combine these separate occurrence and intensity models into a single model for amount. The models are used to investigate the relationship between the Southern Oscillation Index and Melbourne's rainfall, illustrated with 36 years of rainfall data from Melbourne, Australia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号