首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Abstract. We introduce a class of Gibbs–Markov random fields built on regular tessellations that can be understood as discrete counterparts of Arak–Surgailis polygonal fields. We focus first on consistent polygonal fields, for which we show consistency, Markovianity and solvability by means of dynamic representations. Next, we develop disagreement loop as well as path creation and annihilation dynamics for their general Gibbsian modifications, which cover most lattice‐based Gibbs–Markov random fields subject to certain mild conditions. Applications to foreground–background image segmentation problems are discussed.  相似文献   

2.
Abstract.  The purpose of this paper was to construct perfect samplers for length-interacting Arak–Clifford–Surgailis polygonal Markov fields in the plane with nodes of order 2 ( V -shaped nodes). This is achieved by providing for the polygonal fields a hard core marked point process representation with individual points carrying polygonal loops as their marks, so that the coupling from the past and clan of ancestors routines can be adopted.  相似文献   

3.
Based on a random cluster representation, the Swendsen–Wang algorithm for the Ising and Potts distributions is extended to a class of continuous Markov random fields. The algorithm can be described briefly as follows. A given configuration is decomposed into clusters. Probabilities for flipping the values of the random variables in each cluster are calculated. According to these probabilities, values of all the random variables in each cluster will be either updated or kept unchanged and this is done independently across the clusters. A new configuration is then obtained. We will show through a simulation study that, like the Swendsen–Wang algorithm in the case of Ising and Potts distributions, the cluster algorithm here also outperforms the Gibbs sampler in beating the critical slowing down for some strongly correlated Markov random fields.  相似文献   

4.
Abstract. A substantive problem in neuroscience is the lack of valid statistical methods for non‐Gaussian random fields. In the present study, we develop a flexible, yet tractable model for a random field based on kernel smoothing of a so‐called Lévy basis. The resulting field may be Gaussian, but there are many other possibilities, including random fields based on Gamma, inverse Gaussian and normal inverse Gaussian (NIG) Lévy bases. It is easy to estimate the parameters of the model and accordingly to assess by simulation the quantiles of test statistics commonly used in neuroscience. We give a concrete example of magnetic resonance imaging scans that are non‐Gaussian. For these data, simulations under the fitted models show that traditional methods based on Gaussian random field theory may leave small, but significant changes in signal level undetected, while these changes are detectable under a non‐Gaussian Lévy model.  相似文献   

5.
Two methods to approximate infinitely divisible random fields are presented. The methods are based on approximating the kernel function in the spectral representation of such fields, leading to numerical integration of the respective integrals. Error bounds for the approximation error are derived and the approximations are used to simulate certain classes of infinitely divisible random fields.  相似文献   

6.
Summary. Enormous quantities of geoelectrical data are produced daily and often used for large scale reservoir modelling. To interpret these data requires reliable and efficient inversion methods which adequately incorporate prior information and use realistically complex modelling structures. We use models based on random coloured polygonal graphs as a powerful and flexible modelling framework for the layered composition of the Earth and we contrast our approach with earlier methods based on smooth Gaussian fields. We demonstrate how the reconstruction algorithm may be efficiently implemented through the use of multigrid Metropolis–coupled Markov chain Monte Carlo methods and illustrate the method on a set of field data.  相似文献   

7.
We describe a class of random field models for geostatistical count data based on Gaussian copulas. Unlike hierarchical Poisson models often used to describe this type of data, Gaussian copula models allow a more direct modelling of the marginal distributions and association structure of the count data. We study in detail the correlation structure of these random fields when the family of marginal distributions is either negative binomial or zero‐inflated Poisson; these represent two types of overdispersion often encountered in geostatistical count data. We also contrast the correlation structure of one of these Gaussian copula models with that of a hierarchical Poisson model having the same family of marginal distributions, and show that the former is more flexible than the latter in terms of range of feasible correlation, sensitivity to the mean function and modelling of isotropy. An exploratory analysis of a dataset of Japanese beetle larvae counts illustrate some of the findings. All of these investigations show that Gaussian copula models are useful alternatives to hierarchical Poisson models, specially for geostatistical count data that display substantial correlation and small overdispersion.  相似文献   

8.
For many environmental processes, recent studies have shown that the dependence strength is decreasing when quantile levels increase. This implies that the popular max‐stable models are inadequate to capture the rate of joint tail decay, and to estimate joint extremal probabilities beyond observed levels. We here develop a more flexible modeling framework based on the class of max‐infinitely divisible processes, which extend max‐stable processes while retaining dependence properties that are natural for maxima. We propose two parametric constructions for max‐infinitely divisible models, which relax the max‐stability property but remain close to some popular max‐stable models obtained as special cases. The first model considers maxima over a finite, random number of independent observations, while the second model generalizes the spectral representation of max‐stable processes. Inference is performed using a pairwise likelihood. We illustrate the benefits of our new modeling framework on Dutch wind gust maxima calculated over different time units. Results strongly suggest that our proposed models outperform other natural models, such as the Student‐t copula process and its max‐stable limit, even for large block sizes.  相似文献   

9.
We focus on the construction of confidence corridors for multivariate nonparametric generalized quantile regression functions. This construction is based on asymptotic results for the maximal deviation between a suitable nonparametric estimator and the true function of interest, which follow after a series of approximation steps including a Bahadur representation, a new strong approximation theorem, and exponential tail inequalities for Gaussian random fields. As a byproduct we also obtain multivariate confidence corridors for the regression function in the classical mean regression. To deal with the problem of slowly decreasing error in coverage probability of the asymptotic confidence corridors, which results in meager coverage for small sample sizes, a simple bootstrap procedure is designed based on the leading term of the Bahadur representation. The finite-sample properties of both procedures are investigated by means of a simulation study and it is demonstrated that the bootstrap procedure considerably outperforms the asymptotic bands in terms of coverage accuracy. Finally, the bootstrap confidence corridors are used to study the efficacy of the National Supported Work Demonstration, which is a randomized employment enhancement program launched in the 1970s. This article has supplementary materials online.  相似文献   

10.
This article re‐examines the F‐test based on linear combinations of the responses, or FLC test, for testing random effects in linear mixed models. In current statistical practice, the FLC test is underused and we argue that it should be reconsidered as a valuable method for use with linear mixed models. We present a new, more general derivation of the FLC test which applies to a broad class of linear mixed models where the random effects can be correlated. We highlight three advantages of the FLC test that are often overlooked in modern applications of linear mixed models, namely its computation speed, its generality, and its exactness as a test. Empirical studies provide new insight into the finite sample performance of the FLC test, identifying cases where it is competitive or even outperforms modern methods in terms of power, as well as settings in which it performs worse than simulation‐based methods for testing random effects. In all circumstances, the FLC test is faster to compute.  相似文献   

11.
We consider a general class of asymmetric univariate distributions depending on a real-valued parameter α, which includes the entire family of univariate symmetric distributions as a special case. We discuss the connections between our proposal and other families of skew distributions that have been studied in the statistical literature. A key element in the construction of such families of distributions is that they can be stochastically represented as the product of two independent random variables. From this representation we can readily derive theoretical properties, easy-to-implement simulation schemes as well as extensions to the multivariate case. We also study statistical inference for this class based on the method of moments and maximum likelihood. We give special attention to the skew-power exponential distribution, but other cases like the skew-t distribution are also considered. Finally, the statistical methods are illustrated with 3 examples based on real datasets.  相似文献   

12.
We study non-parametric regression estimates for random fields. The data satisfies certain strong mixing conditions and is defined on the regular N-dimensional lattice structure. We show consistency and obtain rates of convergence. The rates are optimal modulo a logarithmic factor in some cases. As an application, we estimate the regression function with multidimensional wavelets which are not necessarily isotropic. We simulate random fields on planar graphs with the concept of concliques (cf. [Kaiser MS, Lahiri SN, Nordman DJ. Goodness of fit tests for a class of markov random field models. Ann Statist. 2012;40:104–130]) in numerical examples of the estimation procedure.  相似文献   

13.
This paper defines and studies a new class of non-stationary random processes constructed from discrete non-decimated wavelets which generalizes the Cramér (Fourier) representation of stationary time series. We define an evolutionary wavelet spectrum (EWS) which quantifies how process power varies locally over time and scale. We show how the EWS may be rigorously estimated by a smoothed wavelet periodogram and how both these quantities may be inverted to provide an estimable time-localized autocovariance. We illustrate our theory with a pedagogical example based on discrete non-decimated Haar wavelets and also a real medical time series example.  相似文献   

14.
We consider fast lattice approximation methods for a solution of a certain stochastic non‐local pseudodifferential operator equation. This equation defines a Matérn class random field. We approximate the pseudodifferential operator with truncated Taylor expansion, spectral domain error functional minimization and rounding approximations. This allows us to construct Gaussian Markov random field approximations. We construct lattice approximations with finite‐difference methods. We show that the solutions can be constructed with overdetermined systems of stochastic matrix equations with sparse matrices, and we solve the system of equations with a sparse Cholesky decomposition. We consider convergence of the truncated Taylor approximation by studying band‐limited Matérn fields. We consider the convergence of the discrete approximations to the continuous limits. Finally, we study numerically the accuracy of different approximation methods with an interpolation problem.  相似文献   

15.
We consider intrinsic autoregression models at multiple resolutions. Firstly, we describe a method to construct a class of approximately coherent Markov random fields (MRF) at different scales, overcoming the problem that the marginal Gaussian MRF is not, in general, a MRF with respect to any non-trivial neighbourhood structure. This is based on the approximation of non-Markov Gaussian fields as Gaussian MRFs and is optimal according to different theoretic notions such as Kullback–Leibler divergence. We extend the method to intrinsic autoregressions providing a novel multi-resolution framework.  相似文献   

16.
Fitting Gaussian Markov Random Fields to Gaussian Fields   总被引:3,自引:0,他引:3  
This paper discusses the following task often encountered in building Bayesian spatial models: construct a homogeneous Gaussian Markov random field (GMRF) on a lattice with correlation properties either as present in some observed data, or consistent with prior knowledge. The Markov property is essential in designing computationally efficient Markov chain Monte Carlo algorithms to analyse such models. We argue that we can restate both tasks as that of fitting a GMRF to a prescribed stationary Gaussian field on a lattice when both local and global properties are important. We demonstrate that using the KullbackLeibler discrepancy often fails for this task, giving severely undesirable behaviour of the correlation function for lags outside the neighbourhood. We propose a new criterion that resolves this difficulty, and demonstrate that GMRFs with small neighbourhoods can approximate Gaussian fields surprisingly well even with long correlation lengths. Finally, we discuss implications of our findings for likelihood based inference for general Markov random fields when global properties are also important.  相似文献   

17.
18.
Gaussian random fields whose covariance structures are described by a power law model provide a simple and flexible class of models for isotropic random fields. This class includes fractional Brownian fields as a special case. Because these random fields are nonstationary, the extensive results available on equivalence of Gaussian measures for stationary models do not apply to them. This work shows that results on equivalence for two stationary Gaussian random field models extend in a natural way to the equivalence of a stationary model and a power law model. This result is used to show that if we use a power law model for predicting a random field at unobserved locations when in fact the random field is stationary, we can obtain asymptotically optimal predictions as long as the high frequency behavior of the true spectral density is sufficiently close to the high frequency behavior of the spectral density of the power law model.  相似文献   

19.
Abstract. This is probably the first paper which discusses likelihood inference for a random set using a germ‐grain model, where the individual grains are unobservable, edge effects occur and other complications appear. We consider the case where the grains form a disc process modelled by a marked point process, where the germs are the centres and the marks are the associated radii of the discs. We propose to use a recent parametric class of interacting disc process models, where the minimal sufficient statistic depends on various geometric properties of the random set, and the density is specified with respect to a given marked Poisson model (i.e. a Boolean model). We show how edge effects and other complications can be handled by considering a certain conditional likelihood. Our methodology is illustrated by analysing Peter Diggle's heather data set, where we discuss the results of simulation‐based maximum likelihood inference and the effect of specifying different reference Poisson models.  相似文献   

20.
We propose a new class of time dependent random probability measures and show how this can be used for Bayesian nonparametric inference in continuous time. By means of a nonparametric hierarchical model we define a random process with geometric stick-breaking representation and dependence structure induced via a one dimensional diffusion process of Wright-Fisher type. The sequence is shown to be a strongly stationary measure-valued process with continuous sample paths which, despite the simplicity of the weights structure, can be used for inferential purposes on the trajectory of a discretely observed continuous-time phenomenon. A simple estimation procedure is presented and illustrated with simulated and real financial data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号