首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
The Probability generating function of a random variable which has Generalized Polya Eggenberger Distribution of the second kind (GPED 2) is obtained. The probability density function of the range R, in random sampling from a uniform distribution on (k, l) and exponential distribution with parameter λ is obtained, when the sample size is a random variable from GPED 2. The results of Bazargan-Lari (2004) follow as special cases.  相似文献   

2.
Superefficiency of a projection density estimator The author constructs a projection density estimator with a data‐driven truncation index. This estimator reaches the superoptimal rates 1/n in mean integrated square error and {In ln(n/n}1/2 in uniform almost sure convergence over a given subspace which is dense in the class of all possible densities; the rate of the estimator is quasi‐optimal everywhere else. The subspace in question may be chosen a priori by the statistician.  相似文献   

3.
In this paper, we study the problem of testing the hypothesis on whether the density f of a random variable on a sphere belongs to a given parametric class of densities. We propose two test statistics based on the L2 and L1 distances between a non‐parametric density estimator adapted to circular data and a smoothed version of the specified density. The asymptotic distribution of the L2 test statistic is provided under the null hypothesis and contiguous alternatives. We also consider a bootstrap method to approximate the distribution of both test statistics. Through a simulation study, we explore the moderate sample performance of the proposed tests under the null hypothesis and under different alternatives. Finally, the procedure is illustrated by analysing a real data set based on wind direction measurements.  相似文献   

4.
In this paper, we consider the problem of adaptive density or survival function estimation in an additive model defined by Z=X+Y with X independent of Y, when both random variables are non‐negative. This model is relevant, for instance, in reliability fields where we are interested in the failure time of a certain material that cannot be isolated from the system it belongs. Our goal is to recover the distribution of X (density or survival function) through n observations of Z, assuming that the distribution of Y is known. This issue can be seen as the classical statistical problem of deconvolution that has been tackled in many cases using Fourier‐type approaches. Nonetheless, in the present case, the random variables have the particularity to be supported. Knowing that, we propose a new angle of attack by building a projection estimator with an appropriate Laguerre basis. We present upper bounds on the mean squared integrated risk of our density and survival function estimators. We then describe a non‐parametric data‐driven strategy for selecting a relevant projection space. The procedures are illustrated with simulated data and compared with the performances of a more classical deconvolution setting using a Fourier approach. Our procedure achieves faster convergence rates than Fourier methods for estimating these functions.  相似文献   

5.
Priors are introduced into goodness‐of‐fit tests, both for unknown parameters in the tested distribution and on the alternative density. Neyman–Pearson theory leads to the test with the highest expected power. To make the test practical, we seek priors that make it likely a priori that the power will be larger than the level of the test but not too close to one. As a result, priors are sample size dependent. We explore this procedure in particular for priors that are defined via a Gaussian process approximation for the logarithm of the alternative density. In the case of testing for the uniform distribution, we show that the optimal test is of the U‐statistic type and establish limiting distributions for the optimal test statistic, both under the null hypothesis and averaged over the alternative hypotheses. The optimal test statistic is shown to be of the Cramér–von Mises type for specific choices of the Gaussian process involved. The methodology when parameters in the tested distribution are unknown is discussed and illustrated in the case of testing for the von Mises distribution. The Canadian Journal of Statistics 47: 560–579; 2019 © 2019 Statistical Society of Canada  相似文献   

6.
As GARCH models and stable Paretian distributions have been revisited in the recent past with the papers of Hansen and Lunde (J Appl Econom 20: 873–889, 2005) and Bidarkota and McCulloch (Quant Finance 4: 256–265, 2004), respectively, in this paper we discuss alternative conditional distributional models for the daily returns of the US, German and Portuguese main stock market indexes, considering ARMA-GARCH models driven by Normal, Student’s t and stable Paretian distributed innovations. We find that a GARCH model with stable Paretian innovations fits returns clearly better than the more popular Normal distribution and slightly better than the Student’s t distribution. However, the Student’s t outperforms the Normal and stable Paretian distributions when the out-of-sample density forecasts are considered.  相似文献   

7.
The probability density function of the range R, in random sampling from a uniform distribution on (k, l) and exponential distribution with parameter λ is obtained, when the sample size is a random variable having the Generalized Polya Eggenberger Distribution of the first kind (GPED 1). The results of Raghunandanan and Patil (1972) and Bazargan-lari (1999) follow as special cases. The p.d.f of rangeR is obtained, when the distribution of the sample sizeN belongs to Katz family of distributions, as a special case. An erratum to this article is available at .  相似文献   

8.
When Gaussian errors are inappropriate in a multivariate linear regression setting, it is often assumed that the errors are iid from a distribution that is a scale mixture of multivariate normals. Combining this robust regression model with a default prior on the unknown parameters results in a highly intractable posterior density. Fortunately, there is a simple data augmentation (DA) algorithm and a corresponding Haar PX‐DA algorithm that can be used to explore this posterior. This paper provides conditions (on the mixing density) for geometric ergodicity of the Markov chains underlying these Markov chain Monte Carlo algorithms. Letting d denote the dimension of the response, the main result shows that the DA and Haar PX‐DA Markov chains are geometrically ergodic whenever the mixing density is generalized inverse Gaussian, log‐normal, inverted Gamma (with shape parameter larger than d /2) or Fréchet (with shape parameter larger than d /2). The results also apply to certain subsets of the Gamma, F and Weibull families.  相似文献   

9.
Abstract. We propose a non‐linear density estimator, which is locally adaptive, like wavelet estimators, and positive everywhere, without a log‐ or root‐transform. This estimator is based on maximizing a non‐parametric log‐likelihood function regularized by a total variation penalty. The smoothness is driven by a single penalty parameter, and to avoid cross‐validation, we derive an information criterion based on the idea of universal penalty. The penalized log‐likelihood maximization is reformulated as an ?1‐penalized strictly convex programme whose unique solution is the density estimate. A Newton‐type method cannot be applied to calculate the estimate because the ?1‐penalty is non‐differentiable. Instead, we use a dual block coordinate relaxation method that exploits the problem structure. By comparing with kernel, spline and taut string estimators on a Monte Carlo simulation, and by investigating the sensitivity to ties on two real data sets, we observe that the new estimator achieves good L 1 and L 2 risk for densities with sharp features, and behaves well with ties.  相似文献   

10.
The nonparametric density function estimation using sample observations which are contaminated with random noise is studied. The particular form of contamination under consideration is Y = X + Z, where Y is an observable random variableZ is a random noise variable with known distribution, and X is an absolutely continuous random variable which cannot be observed directly. The finite sample size performance of a strongly consistent estimator for the density function of the random variable X is illustrated for different distributions. The estimator uses Fourier and kernel function estimation techniques and allows the user to choose constants which relate to bandwidth windows and limits on integration and which greatly affect the appearance and properties of the estimates. Numerical techniques for computation of the estimated densities and for optimal selection of the constant are given.  相似文献   

11.
The authors analyze the L1 performance of wavelet density estimators. They prove that under mild conditions on the family of wavelets, such estimates are universally consistent in the L1 sense.  相似文献   

12.
In a model for rounded data suppose that the random sample X1,.,.,Xn,. i.i.d., is transformed into an observed random sample X,.,.,X, where X = 2vΔ if Xi, ∈ (2vΔ - Δ, 2vΔ + Δ), for i = 1,.,.,n. We show that the precision Δ of the observations has an important effect on the shape of the kernel density estimator, and we identify important points for the graphical display of this estimator. We examine the IMSE criteria to find the optimal window under the rounded-data model.  相似文献   

13.
To each positive definite probability density there exists an adjoint density which is proportional to the characteristic function of p. The products have a greatest lower bound Λ, and it is known that 0.5276… < Λ ≤ 0.8609… We present a positive definite density with λ(p) = 6/7 and thereby improve the upper estimate. For densities representable as normal scale mixtures, we show that λ(p) ≥ 1 with equality if and only if p is a normal probability density.  相似文献   

14.
Edgeworth–type expansions are given for the log density and also for the derivatives of the density of an asymptotically normal random variable having the standard expansions for its cumulants. Expansions for the log density are much simpler than for the density. In fact the rth term of the expansion for the log density is a polynomial of degree only r + 2, while that for the density is a polynomial of degree 3r.  相似文献   

15.
The authors derive the limiting distribution of M‐estimators in AR(p) models under nonstandard conditions, allowing for discontinuities in score and density functions. Unlike usual regularity assumptions, these conditions are satisfied in the context of L1‐estimation and autoregression quantiles. The asymptotic distributions of the resulting estimators, however, are not generally Gaussian. Moreover, their bootstrap approximations are consistent along very specific sequences of bootstrap sample sizes only.  相似文献   

16.
Suppose that a density fθ (x) belongs to an exponential family, but that inference about θ must be based on data that are obtained from a density that is proportional to W(x)fθ(x). The authors study the Fisher information about θ in observations obtained from such weighted distributions and give conditions under which this information is greater than under the original density. These conditions involve the hazard- and reversed-hazard-rate functions.  相似文献   

17.
Hartigan (1975) defines the number q of clusters in a d ‐variate statistical population as the number of connected components of the set {f > c}, where f denotes the underlying density function on Rd and c is a given constant. Some usual cluster algorithms treat q as an input which must be given in advance. The authors propose a method for estimating this parameter which is based on the computation of the number of connected components of an estimate of {f > c}. This set estimator is constructed as a union of balls with centres at an appropriate subsample which is selected via a nonparametric density estimator of f. The asymptotic behaviour of the proposed method is analyzed. A simulation study and an example with real data are also included.  相似文献   

18.
A robust estimator introduced by Beran (1977a, 1977b), which is based on the minimum Hellinger distance between a projection model density and a nonparametric sample density, is studied empirically. An extensive simulation provides an estimate of the small sample distribution and supplies empirical evidence of the estimator performance for a normal location-scale model. While the performance of the minimum Hellinger distance estimator is seen to be competitive with the maximum likelihood estimator at the true model, its robustness to deviations from normality is shown to be competitive in this setting with that obtained from the M-estimator and the Cramér-von Mises minimum distance estimator. Beran also introduced a goodness-of-fit statisticH 2, based on the minimized Hellinger distance between a member of a parametric family of densities and a nonparametric density estimate. We investigate the statistic H (the square root of H 2) as a test for normality when both location and scale are unspecified. Empirically derived critical values are given which do not require extensive tables. The power of the statistic H compares favorably with four other widely used tests for normality.  相似文献   

19.
This article introduces a method of nonparametric bivariate density estimation based on a bivariate sample level crossing function, which leads to the construction of a bivariate level crossing empirical distribution function (BLCEDF). An efficiency function for this BLCEDF relative to the classical empirical distribution function (EDF), is derived. The BLCEDF gives more efficient estimates than the EDF in the tails of any underlying continuous distribution, for both small and large sample sizes. On the basis of BLCEDF we define a bivariate level crossing kernel density estimator (BLCKDE) and study its properties. We apply the BLCEDF and BLCKDE for various distributions and provide results of simulations that confirm the theoretical properties. A real-world example is given.  相似文献   

20.
For measuring the goodness of 2 m 41 designs, Wu and Zhang (1993) proposed the minimum aberration (MA) criterion. MA 2 m 41 designs have been constructed using the idea of complementary designs when the number of two-level factors, m, exceeds n/2, where n is the total number of runs. In this paper, the structures of MA 2 m 41 designs are obtained when m>5n/16. Based on these structures, some methods are developed for constructing MA 2 m 41 designs for 5n/16<m<n/2 as well as for n/2≤m<n. When m≤5n/16, there is no general method for constructing MA 2 m 41 designs. In this case, we obtain lower bounds for A 30 and A 31, where A 30 and A 31 are the numbers of type 0 and type 1 words with length three respectively. And a method for constructing weak minimum aberration (WMA) 2 m 41 designs (A 30 and A 31 achieving the lower bounds) is demonstrated. Some MA or WMA 2 m 41 designs with 32 or 64 runs are tabulated for practical use, which supplement the tables in Wu and Zhang (1993), Zhang and Shao (2001) and Mukerjee and Wu (2001).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号