首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A set S of vertices in a graph G is a paired-dominating set of G if every vertex of G is adjacent to some vertex in S and if the subgraph induced by S contains a perfect matching. The maximum cardinality of a minimal paired-dominating set of G is the upper paired-domination number of G, denoted by Γpr(G). We establish bounds on Γpr(G) for connected claw-free graphs G in terms of the number n of vertices in G with given minimum degree δ. We show that Γpr(G)≤4n/5 if δ=1 and n≥3, Γpr(G)≤3n/4 if δ=2 and n≥6, and Γpr(G)≤2n/3 if δ≥3. All these bounds are sharp. Further, if n≥6 the graphs G achieving the bound Γpr(G)=4n/5 are characterized, while for n≥9 the graphs G with δ=2 achieving the bound Γpr(G)=3n/4 are characterized.  相似文献   

2.
This paper studies the group testing problem in graphs as follows. Given a graph G=(V,E), determine the minimum number t(G) such that t(G) tests are sufficient to identify an unknown edge e with each test specifies a subset XV and answers whether the unknown edge e is in G[X] or not. Damaschke proved that ⌈log 2 e(G)⌉≤t(G)≤⌈log 2 e(G)⌉+1 for any graph G, where e(G) is the number of edges of G. While there are infinitely many complete graphs that attain the upper bound, it was conjectured by Chang and Hwang that the lower bound is attained by all bipartite graphs. Later, they proved that the conjecture is true for complete bipartite graphs. Chang and Juan verified the conjecture for bipartite graphs G with e(G)≤24 or for k≥5. This paper proves the conjecture for bipartite graphs G with e(G)≤25 or for k≥6. Dedicated to Professor Frank K. Hwang on the occasion of his 65th birthday. J.S.-t.J. is supported in part by the National Science Council under grant NSC89-2218-E-260-013. G.J.C. is supported in part by the National Science Council under grant NSC93-2213-E002-28. Taida Institute for Mathematical Sciences, National Taiwan University, Taipei 10617, Taiwan. National Center for Theoretical Sciences, Taipei Office.  相似文献   

3.
A set S of vertices in a graph G=(V,E) is a total restrained dominating set (TRDS) of G if every vertex of G is adjacent to a vertex in S and every vertex of VS is adjacent to a vertex in VS. The total restrained domination number of G, denoted by γ tr (G), is the minimum cardinality of a TRDS of G. In this paper we characterize the claw-free graphs G of order n with γ tr (G)=n. Also, we show that γ tr (G)≤nΔ+1 if G is a connected claw-free graph of order n≥4 with maximum degree Δn−2 and minimum degree at least 2 and characterize those graphs which achieve this bound.  相似文献   

4.
Let R and F be two disjoint edge sets in an n-dimensional hypercube Q n . We give two constructing methods to build a Hamiltonian cycle or path that includes all the edges of R but excludes all of F. Besides, considering every vertex of Q n incident to at most n−2 edges of F, we show that a Hamiltonian cycle exists if (A) |R|+2|F|≤2n−3 when |R|≥2, or (B) |R|+2|F|≤4n−9 when |R|≤1. Both bounds are tight. The analogous property for Hamiltonian paths is also given. Dedicated to Professor Frank K. Hwang on the occasion of his 65th birthday. Lih-Hsing Hsu’s research project is partially supported by NSC 95-2221-E-233-002. Shu-Chung Liu’s research project is partially supported by NSC 90-2115-M-163-003 and 95-2115-M-163-002. Yeong-Nan Yeh’s research project is partially supported by NSC 95-2115-M-001-009.  相似文献   

5.
Let G be a finite undirected bipartite graph. Let u, v be two vertices of G from different partite sets. A collection of k internal vertex disjoint paths joining u to v is referred as a k-container C k (u,v). A k-container is a k *-container if it spans all vertices of G. We define G to be a k *-laceable graph if there is a k *-container joining any two vertices from different partite sets. A k *-container C k *(u,v)={P 1,…,P k } is equitable if ||V(P i )|−|V(P j )||≤2 for all 1≤i,jk. A graph is equitably k *-laceable if there is an equitable k *-container joining any two vertices in different partite sets. Let Q n be the n-dimensional hypercube. In this paper, we prove that the hypercube Q n is equitably k *-laceable for all kn−4 and n≥5. Dedicated to Professor Frank K. Hwang on the occasion of his 65th birthday. The work of H.-M. Huang was supported in part by the National Science Council of the Republic of China under NSC94-2115-M008-013.  相似文献   

6.
We study the probabilistic model in the key tree management problem. Users have different behaviors. Normal users have probability p to issue join/leave request while the loyal users have probability zero. Given the numbers of such users, our objective is to construct a key tree with minimum expected updating cost. We observe that a single LUN (Loyal User Node) is enough to represent all loyal users. When 1−p≤0.57 we prove that the optimal tree that minimizes the cost is a star. When 1−p>0.57, we try to bound the size of the subtree rooted at every non-root node. Based on the size bound, we construct the optimal tree using dynamic programming algorithm in O(nK+K 4) time where K=min {4(log (1−p)−1)−1,n} and n is the number of normal users.  相似文献   

7.
On domination number of Cartesian product of directed paths   总被引:2,自引:2,他引:0  
Let γ(G) denote the domination number of a digraph G and let P m P n denote the Cartesian product of P m and P n , the directed paths of length m and n. In this paper, we give a lower and upper bound for γ(P m P n ). Furthermore, we obtain a necessary and sufficient condition for P m P n to have efficient dominating set, and determine the exact values: γ(P 2P n )=n, g(P3\square Pn)=n+é\fracn4ù\gamma(P_{3}\square P_{n})=n+\lceil\frac{n}{4}\rceil, g(P4\square Pn)=n+é\frac2n3ù\gamma(P_{4}\square P_{n})=n+\lceil\frac{2n}{3}\rceil, γ(P 5P n )=2n+1 and g(P6\square Pn)=2n+é\fracn+23ù\gamma(P_{6}\square P_{n})=2n+\lceil\frac{n+2}{3}\rceil.  相似文献   

8.
Rocchio’s similarity-based relevance feedback algorithm, one of the most important query reformation methods in information retrieval, is essentially an adaptive supervised learning algorithm from examples. In practice, Rocchio’s algorithm often uses a fixed query updating factor. When this is the case, we strengthen the linear Ω(n) lower bound obtained by Chen and Zhu (Inf. Retr. 5:61–86, 2002) and prove that Rocchio’s algorithm makes Ω(k(nk)) mistakes in searching for a collection of documents represented by a monotone disjunction of k relevant features over the n-dimensional binary vector space {0,1} n , when the inner product similarity measure is used. A quadratic lower bound is obtained when k is linearly proportional to n. We also prove an O(k(nk)3) upper bound for Rocchio’s algorithm with the inner product similarity measure in searching for such a collection of documents with a constant query updating factor and a zero classification threshold.  相似文献   

9.
In this paper generalizations of Heilbronn’s triangle problem to convex hulls of j points in the unit square [0,1]2 are considered. By using results on the independence number of linear hypergraphs, for fixed integers k≥3 and any integers nk a deterministic o(n 6k−4) time algorithm is given, which finds distributions of n points in [0,1]2 such that, simultaneously for j=3,…,k, the areas of the convex hulls determined by any j of these n points are Ω((log n)1/(j−2)/n (j−1)/(j−2)).  相似文献   

10.
Let G=(V,E) be a graph. A set SV is a restrained dominating set if every vertex in VS is adjacent to a vertex in S and to a vertex in VS. The restrained domination number of G, denoted γ r (G), is the smallest cardinality of a restrained dominating set of G. A graph G is said to be cubic if every vertex has degree three. In this paper, we study restrained domination in cubic graphs. We show that if G is a cubic graph of order n, then gr(G) 3 \fracn4\gamma_{r}(G)\geq \frac{n}{4} , and characterize the extremal graphs achieving this lower bound. Furthermore, we show that if G is a cubic graph of order n, then gr(G) £ \frac5n11.\gamma _{r}(G)\leq \frac{5n}{11}. Lastly, we show that if G is a claw-free cubic graph, then γ r (G)=γ(G).  相似文献   

11.
An instance I of Ring Grooming consists of m sets A 1,A 2,…, A m from the universe {0, 1,…, n − 1} and an integer g ≥ 2. The unrestricted variant of Ring Grooming, referred to as Unrestricted Ring Grooming, seeks a partition {P 1 , P 2, …,P k } of {1, 2, …, m} such that for each 1 ≤ ik and is minimized. The restricted variant of Ring Grooming, referred to as Restricted Ring Grooming, seeks a partition of {1,2,…,m} such that | P i | ≤ g for each and is minimized. If g = 2, we provide an optimal polynomial-time algorithm for both variants. If g > 2, we prove that both both variants are NP-hard even with fixed g. When g is a power of two, we propose an approximation algorithm called iterative matching. Its approximation ratio is exactly 1.5 when g = 4, at most 2.5 when g = 8, and at most in general while it is conjectured to be at most . The iterative matching algorithm is also extended for Unrestricted Ring Grooming with arbitrary g, and a loose upper bound on its approximation ratio is . In addition, set-cover based approximation algorithms have been proposed for both Unrestricted Ring Grooming and Restricted Ring Grooming. They have approximation ratios of at most 1 + log g, but running time in polynomial of m g . Work supported by a DIMACS postdoctoral fellowship.  相似文献   

12.
In the paper “Fault-free Mutually Independent Hamiltonian Cycles in Hypercubes with Faulty Edges” (J. Comb. Optim. 13:153–162, 2007), the authors claimed that an n-dimensional hypercube can be embedded with (n−1−f)-mutually independent Hamiltonian cycles when fn−2 faulty edges may occur accidentally. However, there are two mistakes in their proof. In this paper, we give examples to explain why the proof is deficient. Then we present a correct proof. This work was supported in part by the National Science Council of the Republic of China under Contract NSC 95-2221-E-233-002.  相似文献   

13.
We study the online rectangle filling problem which arises in channel aware scheduling of wireless networks, and present deterministic and randomized results for algorithms that are allowed a k-lookahead for k≥2. Our main result is a deterministic min {1.848,1+2/(k−1)}-competitive online algorithm. This is the first algorithm for this problem with a competitive ratio approaching 1 as k approaches +∞. The previous best-known solution for this problem has a competitive ratio of 2 for any k≥2. We also present a randomized online algorithm with a competitive ratio of 1+1/(k+1). Our final result is a closely matching lower bound (also proved in this paper) of $1+1/(\sqrt{k+2}+\sqrt{k+1})^{2}>1+1/(4(k+2))$1+1/(\sqrt{k+2}+\sqrt{k+1})^{2}>1+1/(4(k+2)) on the competitive ratio of any randomized online algorithm against an oblivious adversary. These are the first known results for randomized algorithms for this problem.  相似文献   

14.
We introduce a hierarchy of problems between the Dominating Set problem and the Power Dominating Set (PDS) problem called the -round power dominating set (-round PDS, for short) problem. For =1, this is the Dominating Set problem, and for n−1, this is the PDS problem; here n denotes the number of nodes in the input graph. In PDS the goal is to find a minimum size set of nodes S that power dominates all the nodes, where a node v is power dominated if (1) v is in S or it has a neighbor in S, or (2) v has a neighbor u such that u and all of its neighbors except v are power dominated. Note that rule (1) is the same as for the Dominating Set problem, and that rule (2) is a type of propagation rule that applies iteratively. The -round PDS problem has the same set of rules as PDS, except we apply rule (2) in “parallel” in at most −1 rounds. We prove that -round PDS cannot be approximated better than 2log1-en2^{\log^{1-\epsilon}{n}} even for =4 in general graphs. We provide a dynamic programming algorithm to solve -round PDS optimally in polynomial time on graphs of bounded tree-width. We present a PTAS (polynomial time approximation scheme) for -round PDS on planar graphs for l = O(\fraclognloglogn)\ell=O(\frac{\log{n}}{\log{\log{n}}}) . Finally, we give integer programming formulations for -round PDS.  相似文献   

15.
Golumbic et al. (Discrete Appl. Math. 154:1465–1477, 2006) defined the readability of a monotone Boolean function f to be the minimum integer k such that there exists an -formula equivalent to f in which each variable appears at most k times. They asked whether there exists a polynomial-time algorithm, which given a monotone Boolean function f, in CNF or DNF form, checks whether f is a read-k function, for a fixed k. In this paper, we partially answer this question already for k=2 by showing that it is NP-hard to decide if a given monotone formula represents a read-twice function. It follows also from our reduction that it is NP-hard to approximate the readability of a given monotone Boolean function f:{0,1} n →{0,1} within a factor of O(n)\mathcal{O}(n) . We also give tight sublinear upper bounds on the readability of a monotone Boolean function given in CNF (or DNF) form, parameterized by the number of terms in the CNF and the maximum size in each term, or more generally the maximum number of variables in the intersection of any constant number of terms. When the variables of the DNF can be ordered so that each term consists of a set of consecutive variables, we give much tighter logarithmic bounds on the readability.  相似文献   

16.
Motivated by the existence of an APTAS (Asymptotic PTAS) for bin packing problem, we consider the batch scheduling problem with nonidentical job sizes to minimize makespan. For the proportional special version, i.e., there exists a fixed number α such that p j =α s j for every 1≤jn, we first present a lower bound of 3/2 for the approximation ratio and then design an APTAS. Supported by NNSF of China (No.10671108).  相似文献   

17.
The locally twisted cube is a variation of hypercube, which possesses some properties superior to the hypercube. In this paper, we investigate the edge-fault-tolerant hamiltonicity of an n-dimensional locally twisted cube, denoted by LTQ n . We show that for any LTQ n (n≥3) with at most 2n−5 faulty edges in which each node is incident to at least two fault-free edges, there exists a fault-free Hamiltonian cycle. We also demonstrate that our result is optimal with respect to the number of faulty edges tolerated.  相似文献   

18.
For a positive integer k, a total {k}-dominating function of a graph G is a function f from the vertex set V(G) to the set {0,1,2,…,k} such that for any vertex vV(G), the condition ∑ uN(v) f(u)≥k is fulfilled, where N(v) is the open neighborhood of v. A set {f 1,f 2,…,f d } of total {k}-dominating functions on G with the property that ?i=1dfi(v) £ k\sum_{i=1}^{d}f_{i}(v)\le k for each vV(G), is called a total {k}-dominating family (of functions) on G. The maximum number of functions in a total {k}-dominating family on G is the total {k}-domatic number of G, denoted by dt{k}(G)d_{t}^{\{k\}}(G). Note that dt{1}(G)d_{t}^{\{1\}}(G) is the classic total domatic number d t (G). In this paper we initiate the study of the total {k}-domatic number in graphs and we present some bounds for dt{k}(G)d_{t}^{\{k\}}(G). Many of the known bounds of d t (G) are immediate consequences of our results.  相似文献   

19.
In the connected facility location (ConFL) problem, we are given a graph G=(V,E) with nonnegative edge cost c e on the edges, a set of facilities ??V, a set of demands (i.e., clients) $\mathcal{D}\subseteq VIn the connected facility location (ConFL) problem, we are given a graph G=(V,E) with nonnegative edge cost c e on the edges, a set of facilities ℱ⊆V, a set of demands (i.e., clients) D í V\mathcal{D}\subseteq V , and a parameter M≥1. Each facility i has a nonnegative opening cost f i and each client j has d j units of demand. Our objective is to open some facilities, say F⊆ℱ, assign each demand j to some open facility i(j)∈F and connect all open facilities using a Steiner tree T such that the total cost, which is ?i ? Ffi+?j ? Ddjci(j)j+M?e ? Tce\sum_{i\in F}f_{i}+\sum_{j\in \mathcal{D}}d_{j}c_{i(j)j}+M\sum_{e\in T}c_{e} , is minimized. We present a primal-dual 6.55-approximation algorithm for the ConFL problem which improves the previous primal-dual 8.55-approximation algorithm given by Swamy and Kumar (Algorithmica 40:245–269, 2004).  相似文献   

20.
For a permutation f of the vertex set V(G) of a connected graph G, let δ f (x,y)=|d(x,y)−d(f(x),f(y))|. Define the displacement δ f (G) of G with respect to f to be the sum of δ f (x,y) over all unordered pairs {x,y} of distinct vertices of G. Let π(G) denote the smallest positive value of δ f (G) among the n! permutations f of V(G). In this note, we determine all trees T with π(T)=2 or 4. Dedicated to Professor Frank K. Hwang on the occasion of his 65th birthday.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号