首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a Bayesian analysis of a piecewise linear model constructed by using basis functions which generalizes the univariate linear spline to higher dimensions. Prior distributions are adopted on both the number and the locations of the splines, which leads to a model averaging approach to prediction with predictive distributions that take into account model uncertainty. Conditioning on the data produces a Bayes local linear model with distributions on both predictions and local linear parameters. The method is spatially adaptive and covariate selection is achieved by using splines of lower dimension than the data.  相似文献   

2.
In this article we suggest multivariate kurtosis as a statistic for detection of outliers in a multivariate linear regression model. The statistic has some local optimality properties.  相似文献   

3.
This paper proposes robust regression to solve the problem of outliers in seemingly unrelated regression (SUR) models. The authors present an adaptation of S‐estimators to SUR models. S‐estimators are robust, have a high breakdown point and are much more efficient than other robust regression estimators commonly used in practice. Furthermore, modifications to Ruppert's algorithm allow a fast evaluation of them in this context. The classical example of U.S. corporations is revisited, and it appears that the procedure gives an interesting insight into the problem.  相似文献   

4.
In this article, we present a new efficient iteration estimation approach based on local modal regression for single-index varying-coefficient models. The resulted estimators are shown to be robust with regardless of outliers and error distributions. The asymptotic properties of the estimators are established under some regularity conditions and a practical modified EM algorithm is proposed for the new method. Moreover, to achieve sparse estimator when there exists irrelevant variables in the index parameters, a variable selection procedure based on SCAD penalty is developed to select significant parametric covariates and the well-known oracle properties are also derived. Finally, some numerical examples with various distributed errors and a real data analysis are conducted to illustrate the validity and feasibility of our proposed method.  相似文献   

5.
In this article, we investigate a new estimation approach for the partially linear single-index model based on modal regression method, where the non parametric function is estimated by penalized spline method. Moreover, we develop an expection maximum (EM)-type algorithm and establish the large sample properties of the proposed estimation method. A distinguishing characteristic of the newly proposed estimation is robust against outliers through introducing an additional tuning parameter which can be automatically selected using the observed data. Simulation studies and real data example are used to evaluate the finite-sample performance, and the results show that the newly proposed method works very well.  相似文献   

6.
7.
ABSTRACT

This note presents an approximation to multivariate regression models which is obtained from a first-order series expansion of the multivariate link function. The proposed approach yields a variable-addition approximation of regression models that enables a multivariate generalization of the well-known goodness-of-link specification test, available for univariate generalized linear models. Application of this general methodology is illustrated with models of multinomial discrete choice and multivariate fractional data, in which context it is shown to lead to well-established approximation and testing procedures.  相似文献   

8.
Stepwise variable selection procedures are computationally inexpensive methods for constructing useful regression models for a single dependent variable. At each step a variable is entered into or deleted from the current model, based on the criterion of minimizing the error sum of squares (SSE). When there is more than one dependent variable, the situation is more complex. In this article we propose variable selection criteria for multivariate regression which generalize the univariate SSE criterion. Specifically, we suggest minimizing some function of the estimated error covariance matrix: the trace, the determinant, or the largest eigenvalue. The computations associated with these criteria may be burdensome. We develop a computational framework based on the use of the SWEEP operator which greatly reduces these calculations for stepwise variable selection in multivariate regression.  相似文献   

9.
In this paper we discuss estimation and diagnostic procedures in elliptical multivariate regression models with equicorrelated random errors. Two procedures are proposed for the parameter estimation and the local influence curvatures are derived under some usual perturbation schemes to assess the sensitivity of the maximum likelihood estimates (MLEs). Two motivating examples preliminarily analyzed under normal errors are reanalyzed considering appropriate elliptical distributions. The local influence approach is used to compare the sensitivity of the model estimates.  相似文献   

10.
The problem of multicollinearity and outliers in the data set produce undesirable effects on the ordinary least squares estimator. Therefore, robust two parameter ridge estimation based on M-estimator (ME) is introduced to deal with multicollinearity and outliers in the y-direction. The proposed estimator outperforms ME, two parameter ridge estimator and robust ridge M-estimator according to mean square error criterion. Moreover, a numerical example and a Monte Carlo simulation experiment are presented.  相似文献   

11.
A computationally simple method of robust estimation in the generalized Poisson model is presented. Estimators are proved to be optimal in the sense of local minimax testing, conditionally on the explanatory variable. Results of a Monte Carlo experiment are supplemented where robust and efficient estimators are compared.  相似文献   

12.
13.
The purpose of this paper is to introduce a class of robust designs to be used with ratio estimators and extend them to regression estimators. Robustness is to be achieved against departures from a model for which the estimator is ‘optimal’. Practical implementation of the design is indicated both for large and small samples.  相似文献   

14.
Ordinary least-square (OLS) estimators for a linear model are very sensitive to unusual values in the design space or outliers among y values. Even one single atypical value may have a large effect on the parameter estimates. This article aims to review and describe some available and popular robust techniques, including some recent developed ones, and compare them in terms of breakdown point and efficiency. In addition, we also use a simulation study and a real data application to compare the performance of existing robust methods under different scenarios.  相似文献   

15.
We consider a regression analysis of multivariate response on a vector of predictors. In this article, we develop a sliced inverse regression-based method for reducing the dimension of predictors without requiring a prespecified parametric model. Our proposed method preserves as much regression information as possible. We derive the asymptotic weighted chi-squared test for dimension. Simulation results are reported and comparisons are made with three methods—most predictable variates, k-means inverse regression and canonical correlation approach.  相似文献   

16.
17.
This paper proposes the second-order least squares estimation, which is an extension of the ordinary least squares method, for censored regression models where the error term has a general parametric distribution (not necessarily normal). The strong consistency and asymptotic normality of the estimator are derived under fairly general regularity conditions. We also propose a computationally simpler estimator which is consistent and asymptotically normal under the same regularity conditions. Finite sample behavior of the proposed estimators under both correctly and misspecified models are investigated through Monte Carlo simulations. The simulation results show that the proposed estimator using optimal weighting matrix performs very similar to the maximum likelihood estimator, and the estimator with the identity weight is more robust against the misspecification.  相似文献   

18.
In this article, we consider the problem of selecting functional variables using the L1 regularization in a functional linear regression model with a scalar response and functional predictors, in the presence of outliers. Since the LASSO is a special case of the penalized least-square regression with L1 penalty function, it suffers from the heavy-tailed errors and/or outliers in data. Recently, Least Absolute Deviation (LAD) and the LASSO methods have been combined (the LAD-LASSO regression method) to carry out robust parameter estimation and variable selection simultaneously for a multiple linear regression model. However, variable selection of the functional predictors based on LASSO fails since multiple parameters exist for a functional predictor. Therefore, group LASSO is used for selecting functional predictors since group LASSO selects grouped variables rather than individual variables. In this study, we propose a robust functional predictor selection method, the LAD-group LASSO, for a functional linear regression model with a scalar response and functional predictors. We illustrate the performance of the LAD-group LASSO on both simulated and real data.  相似文献   

19.
Analysis of random censored life-time data along with some related stochastic covariables is of great importance in many applied sciences. The parametric estimation technique commonly used under this set-up is based on the efficient but non-robust likelihood approach. In this paper, we propose a robust parametric estimator for censored data with stochastic covariates based on the minimum density power divergence approach. The resulting estimator also has competitive efficiency with respect to the maximum likelihood estimator under pure data. The strong robustness property of the proposed estimator with respect to the presence of outliers is examined and illustrated through an appropriate real data example and simulation studies. Further, the theoretical asymptotic properties of the proposed estimator are also derived in terms of a general class of M-estimators based on the estimating equation.  相似文献   

20.
Qingguo Tang 《Statistics》2013,47(2):388-404
A global smoothing procedure is developed using B-spline function approximation for estimating the unknown functions of a functional coefficient regression model with spatial data. A general formulation is used to treat mean regression, median regression, quantile regression and robust mean regression in one setting. The global convergence rates of the estimators of unknown coefficient functions are established. Various applications of the main results, including estimating conditional quantile coefficient functions and robustifying the mean regression coefficient functions are given. Finite sample properties of our procedures are studied through Monte Carlo simulations. A housing data example is used to illustrate the proposed methodology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号