首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In dealing with ties in failure time data the mechanism by which the data are observed should be considered. If the data are discrete, the process is relatively simple and is determined by what is actually observed. With continuous data, ties are not supposed to occur, but they do because the data are grouped into intervals (even if only rounding intervals). In this case there is actually a non–identifiability problem which can only be resolved by modelling the process. Various reasonable modelling assumptions are investigated in this paper. They lead to better ways of dealing with ties between observed failure times and censoring times of different individuals. The current practice is to assume that the censoring times occur after all the failures with which they are tied.  相似文献   

2.
The identifiability problem in Competing Risks is well known. In particular, it implies that independent action or otherwise of the risks cannot be inferred from data alone. However, Crowder (1996) showed that, in the case of purely discrete failure times, an inference can be made. An algebraic criterion was derived which bears essentially on the independence in question. The condition was presented in a theoretical setting but it was pointed out that the quantities involved can be estimated from data and that, therefore, there is the potential to develop practical tests for the hypothesis of independence. It is the purpose of this paper to construct such a test. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Abstract

Lifetime data with masked failure causes arise in both reliability engineering and epidemiology. The phenomenon of masking occurs when a subject is exposed to multiple risks. A competing risks model with masking probabilities is widely used for the masked failure data. However, in many cases, the model suffers from an identification problem. We show that the identifiability of masking probabilities depends on both the structure of data and the cause-specific hazard functions. Motivated by this result, two existing solutions are reviewed and further improved.  相似文献   

4.
In this paper we consider a binary, monotone system whose component states are dependent through the possible occurrence of independent common shocks, i.e. shocks that destroy several components at once. The individual failure of a component is also thought of as a shock. Such systems can be used to model common cause failures in reliability analysis. The system may be a technological one, or a human being. It is observed until it fails or dies. At this instant, the set of failed components and the failure time of the system are noted. The failure times of the components are not known. These are the so-called autopsy data of the system. For the case of independent components, i.e. no common shocks, Meilijson (1981), Nowik (1990), Antoine et al . (1993) and GTsemyr (1998) discuss the corresponding identifiability problem, i.e. whether the component life distributions can be determined from the distribution of the observed data. Assuming a model where autopsy data is known to be enough for identifia bility, Meilijson (1994) goes beyond the identifiability question and into maximum likelihood estimation of the parameters of the component lifetime distributions based on empirical autopsy data from a sample of several systems. He also considers life-monitoring of some components and conditional life-monitoring of some other. Here a corresponding Bayesian approach is presented for the shock model. Due to prior information one advantage of this approach is that the identifiability problem represents no obstacle. The motivation for introducing the shock model is that the autopsy model is of special importance when components can not be tested separately because it is difficult to reproduce the conditions prevailing in the functioning system. In Gåsemyr & Natvig (1997) we treat the Bayesian approach to life-monitoring and conditional life- monitoring of components  相似文献   

5.
In this paper, we discuss the problem of predicting times to the latent failures of units censored in multiple stages in a progressively Type-II censored competing risks model. It is assumed that the lifetime distribution of the latent failure times are independent and exponential-distributed with the different scale parameters. Several classical point predictors such as the maximum likelihood predictor, the best unbiased predictor, the best linear unbiased predictor, the median unbiased predictor and the conditional median predictor are obtained. The Bayesian point predictors are derived under squared error loss criterion. Moreover, the point estimators of the unknown parameters are obtained using the observed data and different point predictors of the latent failure times. Finally, Monte-Carlo simulations are carried out to compare the performances of the different methods of prediction and estimation and one real data is used to illustrate the proposed procedures.  相似文献   

6.
We prove identifiability of parameters for a broad class of random graph mixture models. These models are characterized by a partition of the set of graph nodes into latent (unobservable) groups. The connectivities between nodes are independent random variables when conditioned on the groups of the nodes being connected. In the binary random graph case, in which edges are either present or absent, these models are known as stochastic blockmodels and have been widely used in the social sciences and, more recently, in biology. Their generalizations to weighted random graphs, either in parametric or non-parametric form, are also of interest. Despite these many applications, the parameter identifiability issue for such models has only been touched upon in the literature. We give here a thorough investigation of this problem. Our work also has consequences for parameter estimation. In particular, the estimation procedure proposed by Frank and Harary for binary affiliation models is revisited in this article.  相似文献   

7.
Failure Inference From a Marker Process Based on a Bivariate Wiener Model   总被引:1,自引:0,他引:1  
Many models have been proposed that relate failure times and stochastic time-varying covariates. In some of these models, failure occurs when a particular observable marker crosses a threshold level. We are interested in the more difficult, and often more realistic, situation where failure is not related deterministically to an observable marker. In this case, joint models for marker evolution and failure tend to lead to complicated calculations for characteristics such as the marginal distribution of failure time or the joint distribution of failure time and marker value at failure. This paper presents a model based on a bivariate Wiener process in which one component represents the marker and the second, which is latent (unobservable), determines the failure time. In particular, failure occurs when the latent component crosses a threshold level. The model yields reasonably simple expressions for the characteristics mentioned above and is easy to fit to commonly occurring data that involve the marker value at the censoring time for surviving cases and the marker value and failure time for failing cases. Parametric and predictive inference are discussed, as well as model checking. An extension of the model permits the construction of a composite marker from several candidate markers that may be available. The methodology is demonstrated by a simulated example and a case application.  相似文献   

8.
In this article, we consider the situation under a life test, in which the failure time of the test units are not related deterministically to an observable stochastic time varying covariate. In such a case, the joint distribution of failure time and a marker value would be useful for modeling the step stress life test. The problem of accelerating such an experiment is considered as the main aim of this article. We present a step stress accelerated model based on a bivariate Wiener process with one component as the latent (unobservable) degradation process, which determines the failure times and the other as a marker process, the degradation values of which are recorded at times of failure. Parametric inference based on the proposed model is discussed and the optimization procedure for obtaining the optimal time for changing the stress level is presented. The optimization criterion is to minimize the approximate variance of the maximum likelihood estimator of a percentile of the products’ lifetime distribution.  相似文献   

9.
In this paper, we consider the analysis of hybrid censored competing risks data, based on Cox's latent failure time model assumptions. It is assumed that lifetime distributions of latent causes of failure follow Weibull distribution with the same shape parameter, but different scale parameters. Maximum likelihood estimators (MLEs) of the unknown parameters can be obtained by solving a one-dimensional optimization problem, and we propose a fixed-point type algorithm to solve this optimization problem. Approximate MLEs have been proposed based on Taylor series expansion, and they have explicit expressions. Bayesian inference of the unknown parameters are obtained based on the assumption that the shape parameter has a log-concave prior density function, and for the given shape parameter, the scale parameters have Beta–Gamma priors. We propose to use Markov Chain Monte Carlo samples to compute Bayes estimates and also to construct highest posterior density credible intervals. Monte Carlo simulations are performed to investigate the performances of the different estimators, and two data sets have been analysed for illustrative purposes.  相似文献   

10.
A fundamental problem with the latent-time framework in competing risks is the lack of identifiability of the joint distribution. Given observed covariates along with assumptions as to the form of their effect, then identifiability may obtain. However it is difficult to check any assumptions about form since a more general model may lose identifiability. This paper considers a general framework for modelling the effect of covariates, with the single assumption that the copula dependency structure of the latent times is invariant to the covariates. This framework consists of a set of functions: the covariate-time transformations. The main result produces bounds on these functions, which are derived solely from the crude incidence functions. These bounds are a useful model checking tool when considering the covariate-time transformation resulting from any particular set of further assumptions. An example is given where the widely-used assumption of independent competing risks is checked.  相似文献   

11.
We consider the progressively Type-II censored competing risks model based on sequential order statistics. It is assumed that the latent failure times are independent and the failure of each unit influences the lifetime distributions of the latent failure times of surviving units. We provide explicit expressions for the likelihood function of the available data under the conditional proportional hazard rate (CPHR) and the power trend conditional proportional hazard rate (PTCPHR) models. Under CPHR and PTCPHR models and assumption that the baseline distributions of the latent failure times are exponential, classical and Bayesian estimates of the unknown parameters are provided. Monte Carlo simulations are then performed for illustrative purposes. Finally, two datasets are analyzed.  相似文献   

12.
In this paper, we study the indentifiability of a latent random effect model for the mixed correlated continuous and ordinal longitudinal responses. We derive conditions for the identifiability of the covariance parameters of the responses. Also, we proposed sensitivity analysis to investigate the perturbation from the non-identifiability of the covariance parameters, it is shown how one can use some elements of covariance structure. These elements associate conditions for identifiability of the covariance parameters of the responses. Influence of small perturbation of these elements on maximal normal curvature is also studied. The model is illustrated using medical data.  相似文献   

13.
In competing risks a failure time T and a cause C , one of p possible, are observed. A traditional representation is via a vector ( T 1, ..., Tp ) of latent failure times such that T = min( T 1, ..., Tp ); C is defined by T = TC in the basic situation of failure from a single cause. There are several results in the literature to the effect that a joint distribution for ( T 1, ..., Tp ), in which the Tj are independent, can always be constructed to yield any given bivariate distribution for ( C , T ). For this reason the prevailing wisdom is that independence cannot be assessed from competing risks data, not even with arbitrarily large sample sizes (e.g. Prentice et al. , 1978). A result was given by Crowder (1996) which shows that, under certain circumstances, independence can be assessed. The various results will be drawn together and a complete characterization can now be given in terms of independent-risks proxy models.  相似文献   

14.
Summary.  The reciprocal of serum creatinine concentration, RC, is often used as a biomarker to monitor renal function. It has been observed that RC trajectories remain relatively stable after transplantation until a certain moment, when an irreversible decrease in the RC levels occurs. This decreasing trend commonly precedes failure of a graft. Two subsets of individuals can be distinguished according to their RC trajectories: a subset of individuals having stable RC levels and a subset of individuals who present an irrevocable decrease in their RC levels. To describe such data, the paper proposes a joint latent class model for longitudinal and survival data with two latent classes. RC trajectories within latent class one are modelled by an intercept-only random-effects model and RC trajectories within latent class two are modelled by a segmented random changepoint model. A Bayesian approach is used to fit this joint model to data from patients who had their first kidney transplantation in the Leiden University Medical Center between 1983 and 2002. The resulting model describes the kidney transplantation data very well and provides better predictions of the time to failure than other joint and survival models.  相似文献   

15.
Capture–recapture methods (also referred to as 'multiple-record systems') have been widely used in enumerating human populations in the fields of epidemiology and public health. In this article, we introduce latent class models into multiple-record systems to account for unobserved heterogeneity in the population. Two approaches, the full and the conditional likelihood, are proposed to estimate the unknown population abundance. We also suggest rules to diagnose identifiability of the proposed latent class models. The methodologies are illustrated by two real examples: the first is to count the undercount of homelessness in the Adelaide central business district, and the second concerns the incidence of diabetes in a small Italian town.  相似文献   

16.
This paper examines modeling and inference questions for experiments in which different subsets of a set of k possibly dependent components are tested in r different environments. In each environment, the failure times of the set of components on test is assumed to be governed by a particular type of multivariate exponential (MVE) distribution. For any given component tested in several environments, it is assumed that its marginal failure rate varies from one environment to another via a change of scale between the environments, resulting in a joint MVE model which links in a natural way the applicable MVE distributions describing component behavior in each fixed environment. This study thus extends the work of Proschan and Sullo (1976) to multiple environments and the work of Kvam and Samaniego (1993) to dependent data. The problem of estimating model parameters via the method of maximum likelihood is examined in detail. First, necessary and sufficient conditions for the identifiability of model parameters are established. We then treat the derivation of the MLE via a numerically-augmented application of the EM algorithm. The feasibility of the estimation method is demonstrated in an example in which the likelihood ratio test of the hypothesis of equal component failure rates within any given environment is carried out.  相似文献   

17.
ABSTRACT

In survival analysis, individuals may fail due to multiple causes of failure called competing risks setting. Parametric models such as Weibull model are not improper that ignore the assumption of multiple failure times. In this study, a novel extension of Weibull distribution is proposed which is improper and then can incorporate to the competing risks framework. This model includes the original Weibull model before a pre-specified time point and an exponential form for the tail of the time axis. A Bayesian approach is used for parameter estimation. A simulation study is performed to evaluate the proposed model. The conducted simulation study showed identifiability and appropriate convergence of the proposed model. The proposed model and the 3-parameter Gompertz model, another improper parametric distribution, are fitted to the acute lymphoblastic leukemia dataset.  相似文献   

18.
Bivariate failure time data is widely used in survival analysis, for example, in twins study. This article presents a class of chi2-type tests for independence between pairs of failure times after adjusting for covariates. A bivariate accelerated failure time model is proposed for the joint distribution of bivariate failure times while leaving the dependence structures for related failure times completely unspecified. Theoretical properties of the proposed tests are derived and variance estimates of the test statistics are obtained using a resampling technique. Simulation studies show that the proposed tests are appropriate for practical use. Two examples including the study of infection in catheters for patients on dialysis and the diabetic retinopathy study are also given to illustrate the methodology.  相似文献   

19.
This work is concerned with the Bayesian prediction problem of the number of components which will fail in a future time interval, when the failure times are Weibull distributed. Both the 1-sample and the 2-sample prediction problems are dealed with, and some choices of the prior densities on the distribution parameters are discussed which are relatively easy to work with and allow different degrees of knowledge on the failure mechanism to be incorporated in the predictive procedure. Useful relations between the predictive distribution on the number of future failures and the predictive distribution on the future failure times are derived. Numerical examples are also given.  相似文献   

20.
System characteristics of a redundant repairable system with two primary units and one standby are studied from a Bayesian viewpoint with different types of priors assumed for unknown parameters, in which the coverage factor is the same for an operating unit failure as that for a standby unit failure. Times to failure and times to repair of the operating and standby units are assumed to follow exponential distributions. When times to failure and times to repair with uncertain parameters, a Bayesian approach is adopted to evaluate system characteristics. Monte Carlo simulation is used to derive the posterior distribution for the mean time to system failure and the steady-state availability. Some numerical experiments are performed to illustrate the results derived in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号