首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is now possible to carry out Bayesian image segmentation from a continuum parametric model with an unknown number of regions. However, few suitable parametric models exist. We set out to model processes which have realizations that are naturally described by coloured planar triangulations. Triangulations are already used, to represent image structure in machine vision, and in finite element analysis, for domain decomposition. However, no normalizable parametric model, with realizations that are coloured triangulations, has been specified to date. We show how this must be done, and in particular we prove that a normalizable measure on the space of triangulations in the interior of a fixed simple polygon derives from a Poisson point process of vertices. We show how such models may be analysed by using Markov chain Monte Carlo methods and we present two case-studies, including convergence analysis.  相似文献   

2.
Structured additive regression comprises many semiparametric regression models such as generalized additive (mixed) models, geoadditive models, and hazard regression models within a unified framework. In a Bayesian formulation, non-parametric functions, spatial effects and further model components are specified in terms of multivariate Gaussian priors for high-dimensional vectors of regression coefficients. For several model terms, such as penalized splines or Markov random fields, these Gaussian prior distributions involve rank-deficient precision matrices, yielding partially improper priors. Moreover, hyperpriors for the variances (corresponding to inverse smoothing parameters) may also be specified as improper, e.g. corresponding to Jeffreys prior or a flat prior for the standard deviation. Hence, propriety of the joint posterior is a crucial issue for full Bayesian inference in particular if based on Markov chain Monte Carlo simulations. We establish theoretical results providing sufficient (and sometimes necessary) conditions for propriety and provide empirical evidence through several accompanying simulation studies.  相似文献   

3.
Abstract.  A joint dynamic model for the interdependence between infection, immunity and risk of disease is presented. Recurrent latent infections are modelled as realizations from a renewal process and antibody dynamics as a diffusion with a decreasing drift modified by the stimulating effect of the random infections. The augmented submodels are estimated simultaneously in one large Markov chain Monte Carlo algorithm. As an example, we consider the risk of recurrent ear infections when having only partially observed information on bacterial carriage and antibody concentrations.  相似文献   

4.
Fitting Gaussian Markov Random Fields to Gaussian Fields   总被引:3,自引:0,他引:3  
This paper discusses the following task often encountered in building Bayesian spatial models: construct a homogeneous Gaussian Markov random field (GMRF) on a lattice with correlation properties either as present in some observed data, or consistent with prior knowledge. The Markov property is essential in designing computationally efficient Markov chain Monte Carlo algorithms to analyse such models. We argue that we can restate both tasks as that of fitting a GMRF to a prescribed stationary Gaussian field on a lattice when both local and global properties are important. We demonstrate that using the KullbackLeibler discrepancy often fails for this task, giving severely undesirable behaviour of the correlation function for lags outside the neighbourhood. We propose a new criterion that resolves this difficulty, and demonstrate that GMRFs with small neighbourhoods can approximate Gaussian fields surprisingly well even with long correlation lengths. Finally, we discuss implications of our findings for likelihood based inference for general Markov random fields when global properties are also important.  相似文献   

5.
ABSTRACT

We propose models that allow us to capture the evolution of objects over time and more importantly, we provide forecasts to describe an object at future unobserved states utilizing information from the current state along with covariate information. We view objects as random sets and proceed to model them in a hierarchical Bayesian framework and estimate the model parameters using a Markov chain Monte Carlo scheme. We illustrate the methodology with an application to nowcasting of severe weather precipitation fields as obtained from weather radar images, where the severe storm cells are treated as random sets and the wind velocity is used to inform the distributions of the model parameters.  相似文献   

6.
In this paper, we discuss the implementation of fully Bayesian analysis of dynamic image sequences in the context of stochastic deformable templates for shape modelling, Markov/Gibbs random fields for modelling textures, and dynomation.

Throughout, Markov chain Monte Carlo algorithms are used to perform the Bayesian calculations.  相似文献   


7.
We consider hidden Markov models with an unknown number of regimes for the segmentation of the pixel intensities of digital images that consist of a small set of colours. New reversible jump Markov chain Monte Carlo algorithms to estimate both the dimension and the unknown parameters of the model are introduced. Parameters are updated by random walk Metropolis–Hastings moves, without updating the sequence of the hidden Markov chain. The segmentation (i.e. the estimation of the hidden regimes) is a further aim and is performed by means of a number of competing algorithms. We apply our Bayesian inference and segmentation tools to digital images, which are linearized through the Peano–Hilbert scan, and perform experiments and comparisons on both synthetic images and a real brain magnetic resonance image.  相似文献   

8.
Summary.  Structured additive regression models are perhaps the most commonly used class of models in statistical applications. It includes, among others, (generalized) linear models, (generalized) additive models, smoothing spline models, state space models, semiparametric regression, spatial and spatiotemporal models, log-Gaussian Cox processes and geostatistical and geoadditive models. We consider approximate Bayesian inference in a popular subset of structured additive regression models, latent Gaussian models , where the latent field is Gaussian, controlled by a few hyperparameters and with non-Gaussian response variables. The posterior marginals are not available in closed form owing to the non-Gaussian response variables. For such models, Markov chain Monte Carlo methods can be implemented, but they are not without problems, in terms of both convergence and computational time. In some practical applications, the extent of these problems is such that Markov chain Monte Carlo sampling is simply not an appropriate tool for routine analysis. We show that, by using an integrated nested Laplace approximation and its simplified version, we can directly compute very accurate approximations to the posterior marginals. The main benefit of these approximations is computational: where Markov chain Monte Carlo algorithms need hours or days to run, our approximations provide more precise estimates in seconds or minutes. Another advantage with our approach is its generality, which makes it possible to perform Bayesian analysis in an automatic, streamlined way, and to compute model comparison criteria and various predictive measures so that models can be compared and the model under study can be challenged.  相似文献   

9.
This paper deals with the Bayesian analysis of the additive mixed model experiments. Consider b randomly chosen subjects who respond once to each of t treatments. The subjects are treated as random effects and the treatment effects are fixed. Suppose that some prior information is available, thus motivating a Bayesian analysis. The Bayesian computation, however, can be difficult in this situation, especially when a large number of treatments is involved. Three computational methods are suggested to perform the analysis. The exact posterior density of any parameter of interest can be simulated based on random realizations taken from a restricted multivariate t distribution. The density can also be simulated using Markov chain Monte Carlo methods. The simulated density is accurate when a large number of random realizations is taken. However, it may take substantial amount of computer time when many treatments are involved. An alternative Laplacian approximation is discussed. The Laplacian method produces smooth and very accurate approximates to posterior densities, and takes only seconds of computer time. An example of a pipeline cracks experiment is used to illustrate the Bayesian approaches and the computational methods.  相似文献   

10.
Normalized random measures with independent increments are a general, tractable class of nonparametric prior. This paper describes sequential Monte Carlo methods for both conjugate and non-conjugate nonparametric mixture models with these priors. A simulation study is used to compare the efficiency of the different algorithms for density estimation and comparisons made with Markov chain Monte Carlo methods. The SMC methods are further illustrated by applications to dynamically fitting a nonparametric stochastic volatility model and to estimation of the marginal likelihood in a goodness-of-fit testing example.  相似文献   

11.
Latent class models (LCMs) are specific cases of mixture models. Under a Bayesian setup, the symmetric posterior distribution of these models leads Markov chain Monte Carlo (MCMC) methods to suffer from the so-called label switching problem. In this article, we treat the corresponding MCMC outputs using a recent approach, namely, the Equivalence Classes Representative (ECR) algorithm and conclude that it can effectively solve the label switching problem by considering several examples of LCMs, such as mixtures of regressions, hidden Markov models, and Markov random fields. Moreover, the superiority of this method over other approaches becomes apparent.  相似文献   

12.
Summary.  Functional magnetic resonance imaging has become a standard technology in human brain mapping. Analyses of the massive spatiotemporal functional magnetic resonance imaging data sets often focus on parametric or non-parametric modelling of the temporal component, whereas spatial smoothing is based on Gaussian kernels or random fields. A weakness of Gaussian spatial smoothing is underestimation of activation peaks or blurring of high curvature transitions between activated and non-activated regions of the brain. To improve spatial adaptivity, we introduce a class of inhomogeneous Markov random fields with stochastic interaction weights in a space-varying coefficient model. For given weights, the random field is conditionally Gaussian, but marginally it is non-Gaussian. Fully Bayesian inference, including estimation of weights and variance parameters, can be carried out through efficient Markov chain Monte Carlo simulation. Although motivated by the analysis of functional magnetic resonance imaging data, the methodological development is general and can also be used for spatial smoothing and regression analysis of areal data on irregular lattices. An application to stylized artificial data and to real functional magnetic resonance imaging data from a visual stimulation experiment demonstrates the performance of our approach in comparison with Gaussian and robustified non-Gaussian Markov random-field models.  相似文献   

13.
For applications in texture synthesis, we derive two approximate Bayes criteria for selecting a model from a collection of Markov random fields. The first criterion is based on a penalized maximum likelihood. The second criterion, a Markov chain Monte Carlo approximation to the first, has distinct computational advantages. Some simulation results are also presented.  相似文献   

14.
Monte Carlo methods represent the de facto standard for approximating complicated integrals involving multidimensional target distributions. In order to generate random realizations from the target distribution, Monte Carlo techniques use simpler proposal probability densities to draw candidate samples. The performance of any such method is strictly related to the specification of the proposal distribution, such that unfortunate choices easily wreak havoc on the resulting estimators. In this work, we introduce a layered (i.e., hierarchical) procedure to generate samples employed within a Monte Carlo scheme. This approach ensures that an appropriate equivalent proposal density is always obtained automatically (thus eliminating the risk of a catastrophic performance), although at the expense of a moderate increase in the complexity. Furthermore, we provide a general unified importance sampling (IS) framework, where multiple proposal densities are employed and several IS schemes are introduced by applying the so-called deterministic mixture approach. Finally, given these schemes, we also propose a novel class of adaptive importance samplers using a population of proposals, where the adaptation is driven by independent parallel or interacting Markov chain Monte Carlo (MCMC) chains. The resulting algorithms efficiently combine the benefits of both IS and MCMC methods.  相似文献   

15.
We formulate a prior distribution for the energy function of stationary binary Markov random fields (MRFs) defined on a rectangular lattice. In the prior we assign distributions to all parts of the energy function. In particular we define priors for the neighbourhood structure of the MRF, what interactions to include in the model, and for potential values. We define a reversible jump Markov chain Monte Carlo (RJMCMC) procedure to simulate from the corresponding posterior distribution when conditioned to an observed scene. Thereby we are able to learn both the neighbourhood structure and the parametric form of the MRF from the observed scene. We circumvent evaluations of the intractable normalising constant of the MRF when running the RJMCMC algorithm by adopting a previously defined approximate auxiliary variable algorithm. We demonstrate the usefulness of our prior in two simulation examples and one real data example.  相似文献   

16.
The Ising model is one of the simplest and most famous models of interacting systems. It was originally proposed to model ferromagnetic interactions in statistical physics and is now widely used to model spatial processes in many areas such as ecology, sociology, and genetics, usually without testing its goodness of fit. Here, we propose various test statistics and an exact goodness‐of‐fit test for the finite‐lattice Ising model. The theory of Markov bases has been developed in algebraic statistics for exact goodness‐of‐fit testing using a Monte Carlo approach. However, finding a Markov basis is often computationally intractable. Thus, we develop a Monte Carlo method for exact goodness‐of‐fit testing for the Ising model that avoids computing a Markov basis and also leads to a better connectivity of the Markov chain and hence to a faster convergence. We show how this method can be applied to analyze the spatial organization of receptors on the cell membrane.  相似文献   

17.
Two new implementations of the EM algorithm are proposed for maximum likelihood fitting of generalized linear mixed models. Both methods use random (independent and identically distributed) sampling to construct Monte Carlo approximations at the E-step. One approach involves generating random samples from the exact conditional distribution of the random effects (given the data) by rejection sampling, using the marginal distribution as a candidate. The second method uses a multivariate t importance sampling approximation. In many applications the two methods are complementary. Rejection sampling is more efficient when sample sizes are small, whereas importance sampling is better with larger sample sizes. Monte Carlo approximation using random samples allows the Monte Carlo error at each iteration to be assessed by using standard central limit theory combined with Taylor series methods. Specifically, we construct a sandwich variance estimate for the maximizer at each approximate E-step. This suggests a rule for automatically increasing the Monte Carlo sample size after iterations in which the true EM step is swamped by Monte Carlo error. In contrast, techniques for assessing Monte Carlo error have not been developed for use with alternative implementations of Monte Carlo EM algorithms utilizing Markov chain Monte Carlo E-step approximations. Three different data sets, including the infamous salamander data of McCullagh and Nelder, are used to illustrate the techniques and to compare them with the alternatives. The results show that the methods proposed can be considerably more efficient than those based on Markov chain Monte Carlo algorithms. However, the methods proposed may break down when the intractable integrals in the likelihood function are of high dimension.  相似文献   

18.
Modern Statistics for Spatial Point Processes*   总被引:1,自引:0,他引:1  
Abstract. We summarize and discuss the current state of spatial point process theory and directions for future research, making an analogy with generalized linear models and random effect models, and illustrating the theory with various examples of applications. In particular, we consider Poisson, Gibbs and Cox process models, diagnostic tools and model checking, Markov chain Monte Carlo algorithms, computational methods for likelihood-based inference, and quick non-likelihood approaches to inference.  相似文献   

19.
Summary. The paper demonstrates how cost-effectiveness decision analysis may be implemented from a Bayesian perspective, using Markov chain Monte Carlo simulation methods for both the synthesis of relevant evidence input into the model and the evaluation of the model itself. The desirable aspects of a Bayesian approach for this type of analysis include the incorporation of full parameter uncertainty, the ability to perform all the analysis, including each meta-analysis, in a single coherent model and the incorporation of expert opinion either directly or regarding the relative credibility of different data sources. The method is described, and its ease of implementation demonstrated, through a practical example to evaluate the cost-effectiveness of using taxanes for the second-line treatment of advanced breast cancer compared with conventional treatment. For completeness, the results from the Markov chain Monte Carlo simulation model are compared and contrasted with those from a classical Monte Carlo simulation model.  相似文献   

20.
Discrete Markov random fields form a natural class of models to represent images and spatial datasets. The use of such models is, however, hampered by a computationally intractable normalising constant. This makes parameter estimation and a fully Bayesian treatment of discrete Markov random fields difficult. We apply approximation theory for pseudo-Boolean functions to binary Markov random fields and construct approximations and upper and lower bounds for the associated computationally intractable normalising constant. As a by-product of this process we also get a partially ordered Markov model approximation of the binary Markov random field. We present numerical examples with both the pairwise interaction Ising model and with higher-order interaction models, showing the quality of our approximations and bounds. We also present simulation examples and one real data example demonstrating how the approximations and bounds can be applied for parameter estimation and to handle a fully Bayesian model computationally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号