共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
We propose an efficient and robust method for variance function estimation in semiparametric longitudinal data analysis. The method utilizes a local log‐linear approximation for the variance function and adopts a generalized estimating equation approach to account for within subject correlations. We show theoretically and empirically that our method outperforms estimators using working independence that ignores the correlations. The Canadian Journal of Statistics 39: 656–670; 2011. © 2011 Statistical Society of Canada 相似文献
5.
6.
7.
8.
9.
10.
11.
In this article, we develop regression models with cross‐classified responses. Conditional independence structures can be explored/exploited through the selective inclusion/exclusion of terms in a certain functional ANOVA decomposition, and the estimation is done nonparametrically via the penalized likelihood method. A cohort of computational and data analytical tools are presented, which include cross‐validation for smoothing parameter selection, Kullback–Leibler projection for model selection, and Bayesian confidence intervals for odds ratios. Random effects are introduced to model possible correlations such as those found in longitudinal and clustered data. Empirical performances of the methods are explored in simulation studies of limited scales, and a real data example is presented using some eyetracking data from linguistic studies. The techniques are implemented in a suite of R functions, whose usage is briefly described in the appendix. The Canadian Journal of Statistics 39: 591–609; 2011. © 2011 Statistical Society of Canada 相似文献
12.
Many methods have been developed for the nonparametric estimation of a mean response function, but most of these methods do not lend themselves to simultaneous estimation of the mean response function and its derivatives. Recovering derivatives is important for analyzing human growth data, studying physical systems described by differential equations, and characterizing nanoparticles from scattering data. In this article the authors propose a new compound estimator that synthesizes information from numerous pointwise estimators indexed by a discrete set. Unlike spline and kernel smooths, the compound estimator is infinitely differentiable; unlike local regression smooths, the compound estimator is self‐consistent in that its derivatives estimate the derivatives of the mean response function. The authors show that the compound estimator and its derivatives can attain essentially optimal convergence rates in consistency. The authors also provide a filtration and extrapolation enhancement for finite samples, and the authors assess the empirical performance of the compound estimator and its derivatives via a simulation study and an application to real data. The Canadian Journal of Statistics 39: 280–299; 2011 © 2011 Statistical Society of Canada 相似文献
13.
14.
15.
16.
Often, in industrial stress testing, meteorological data analysis, and other similar situations, measurements may be made sequentially and only values smaller than all previous ones are recorded. When the number of records is fixed in advance, the data are referred to as inversely sampled record-breaking data. This paper is concerned with nonparametric estimation of the distribution and density functions from such data (successive minima). For a single record-breaking sample, consistent estimation is not possible except in the extreme left tail of the distribution. Hence, replication is required, and for m such independent record-breaking samples, the estimators are shown to be strongly consistent and asymptotically normal as m ∞ →. Computer simulations are used to investigate the effect of the bandwidth on the mean squared errors and biases of the smooth estimators, and are also used to provide a comparison of their performance with the analogous estimators obtained under random sampling for record values. 相似文献
17.
Marginal imputation, that consists of imputing items separately, generally leads to biased estimators of bivariate parameters such as finite population coefficients of correlation. To overcome this problem, two main approaches have been considered in the literature: the first consists of using customary imputation methods such as random hot‐deck imputation and adjusting for the bias at the estimation stage. This approach was studied in Skinner & Rao 2002 . In this paper, we extend the results of Skinner & Rao 2002 to the case of arbitrary sampling designs and three variants of random hot‐deck imputation. The second approach consists of using an imputation method, which preserves the relationship between variables. Shao & Wang 2002 proposed a joint random regression imputation procedure that succeeds in preserving the relationships between two study variables. One drawback of the Shao–Wang procedure is that it suffers from an additional variability (called the imputation variance) due to the random selection of residuals, resulting in potentially inefficient estimators. Following Chauvet, Deville, & Haziza 2011 , we propose a fully efficient version of the Shao–Wang procedure that preserves the relationship between two study variables, while virtually eliminating the imputation variance. Results of a simulation study support our findings. An application using data from the Workplace and Employees Survey is also presented. The Canadian Journal of Statistics 40: 124–149; 2012 © 2011 Statistical Society of Canada 相似文献
18.
The authors propose to estimate nonlinear small area population parameters by using the empirical Bayes (best) method, based on a nested error model. They focus on poverty indicators as particular nonlinear parameters of interest, but the proposed methodology is applicable to general nonlinear parameters. They use a parametric bootstrap method to estimate the mean squared error of the empirical best estimators. They also study small sample properties of these estimators by model‐based and design‐based simulation studies. Results show large reductions in mean squared error relative to direct area‐specific estimators and other estimators obtained by “simulated” censuses. The authors also apply the proposed method to estimate poverty incidences and poverty gaps in Spanish provinces by gender with mean squared errors estimated by the mentioned parametric bootstrap method. For the Spanish data, results show a significant reduction in coefficient of variation of the proposed empirical best estimators over direct estimators for practically all domains. The Canadian Journal of Statistics 38: 369–385; 2010 © 2010 Statistical Society of Canada 相似文献
19.
20.
We consider the maximum likelihood estimator $\hat{F}_n$ of a distribution function in a class of deconvolution models where the known density of the noise variable is of bounded variation. This class of noise densities contains in particular bounded, decreasing densities. The estimator $\hat{F}_n$ is defined, characterized in terms of Fenchel optimality conditions and computed. Under appropriate conditions, various consistency results for $\hat{F}_n$ are derived, including uniform strong consistency. The Canadian Journal of Statistics 41: 98–110; 2013 © 2012 Statistical Society of Canada 相似文献