共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Georgios Papageorgiou 《Revue canadienne de statistique》2012,40(2):225-242
The class of joint mean‐covariance models uses the modified Cholesky decomposition of the within subject covariance matrix in order to arrive to an unconstrained, statistically meaningful reparameterisation. The new parameterisation of the covariance matrix has two sets of parameters that separately describe the variances and correlations. Thus, with the mean or regression parameters, these models have three sets of distinct parameters. In order to alleviate the problem of inefficient estimation and downward bias in the variance estimates, inherent in the maximum likelihood estimation procedure, the usual REML estimation procedure adjusts for the degrees of freedom lost due to the estimation of the mean parameters. Because of the parameterisation of the joint mean covariance models, it is possible to adapt the usual REML procedure in order to estimate the variance (correlation) parameters by taking into account the degrees of freedom lost by the estimation of both the mean and correlation (variance) parameters. To this end, here we propose adjustments to the estimation procedures based on the modified and adjusted profile likelihoods. The methods are illustrated by an application to a real data set and simulation studies. The Canadian Journal of Statistics 40: 225–242; 2012 © 2012 Statistical Society of Canada 相似文献
3.
Liang Peng 《Revue canadienne de statistique》2012,40(1):110-123
It is known that the profile empirical likelihood method based on estimating equations is computationally intensive when the number of nuisance parameters is large. Recently, Li, Peng, & Qi (2011) proposed a jackknife empirical likelihood method for constructing confidence regions for the parameters of interest by estimating the nuisance parameters separately. However, when the estimators for the nuisance parameters have no explicit formula, the computation of the jackknife empirical likelihood method is still intensive. In this paper, an approximate jackknife empirical likelihood method is proposed to reduce the computation in the jackknife empirical likelihood method when the nuisance parameters cannot be estimated explicitly. A simulation study confirms the advantage of the new method. The Canadian Journal of Statistics 40: 110–123; 2012 © 2012 Statistical Society of Canada 相似文献
4.
We use the two‐state Markov regime‐switching model to explain the behaviour of the WTI crude‐oil spot prices from January 1986 to February 2012. We investigated the use of methods based on the composite likelihood and the full likelihood. We found that the composite‐likelihood approach can better capture the general structural changes in world oil prices. The two‐state Markov regime‐switching model based on the composite‐likelihood approach closely depicts the cycles of the two postulated states: fall and rise. These two states persist for on average 8 and 15 months, which matches the observed cycles during the period. According to the fitted model, drops in oil prices are more volatile than rises. We believe that this information can be useful for financial officers working in related areas. The model based on the full‐likelihood approach was less satisfactory. We attribute its failure to the fact that the two‐state Markov regime‐switching model is too rigid and overly simplistic. In comparison, the composite likelihood requires only that the model correctly specifies the joint distribution of two adjacent price changes. Thus, model violations in other areas do not invalidate the results. The Canadian Journal of Statistics 41: 353–367; 2013 © 2013 Statistical Society of Canada 相似文献
5.
We consider the problem of estimating a vector interesting parameter in the presence of nuisance parameters through vector unbiased statistical estimation functions (USEFs). An extension of the Cramer—Rao inequality relevant to the present problem is obtained. Three possible optimality criteria in the class of regular vector USEFs are those based on (i) the non-negative definiteness of the difference of dispersion matrices (ii) the trace of the dispersion matrix and (iii) the determinant of the dispersion matrix. We refer to these three criteria as M-optimality, T- optimality and D-optimality respectively. The equivalence of these three optimality criteria is established. By restricting the class of regular USEFs considered by Ferreira (1982), we study some interesting properties of the standardized USEFs and establish essential uniqueness of standardized M-optimal USEF in this restricted class. Finally some illustrative examples are included. 相似文献
6.
Bayesian inference of a generalized Weibull stress‐strength model (SSM) with more than one strength component is considered. For this problem, properly assigning priors for the reliabilities is challenging due to the presence of nuisance parameters. Matching priors, which are priors matching the posterior probabilities of certain regions with their frequentist coverage probabilities, are commonly used but difficult to derive in this problem. Instead, we apply an alternative method and derive a matching prior based on a modification of the profile likelihood. Simulation studies show that this proposed prior performs well in terms of frequentist coverage and estimation even when the sample sizes are minimal. The prior is applied to two real datasets. The Canadian Journal of Statistics 41: 83–97; 2013 © 2012 Statistical Society of Canada 相似文献
7.
Autoregressive models with switching regime are a frequently used class of nonlinear time series models, which are popular in finance, engineering, and other fields. We consider linear switching autoregressions in which the intercept and variance possibly switch simultaneously, while the autoregressive parameters are structural and hence the same in all states, and we propose quasi‐likelihood‐based tests for a regime switch in this class of models. Our motivation is from financial time series, where one expects states with high volatility and low mean together with states with low volatility and higher mean. We investigate the performance of our tests in a simulation study, and give an application to a series of IBM monthly stock returns. The Canadian Journal of Statistics 40: 427–446; 2012 © 2012 Statistical Society of Canada 相似文献
8.
9.
10.
Testing goodness‐of‐fit of commonly used genetic models is of critical importance in many applications including association studies and testing for departure from Hardy–Weinberg equilibrium. Case–control design has become widely used in population genetics and genetic epidemiology, thus it is of interest to develop powerful goodness‐of‐fit tests for genetic models using case–control data. This paper develops a likelihood ratio test (LRT) for testing recessive and dominant models for case–control studies. The LRT statistic has a closed‐form formula with a simple $\chi^{2}(1)$ null asymptotic distribution, thus its implementation is easy even for genome‐wide association studies. Moreover, it has the same power and optimality as when the disease prevalence is known in the population. The Canadian Journal of Statistics 41: 341–352; 2013 © 2013 Statistical Society of Canada 相似文献
11.
The process comparing the empirical cumulative distribution function of the sample with a parametric estimate of the cumulative distribution function is known as the empirical process with estimated parameters and has been extensively employed in the literature for goodness‐of‐fit testing. The simplest way to carry out such goodness‐of‐fit tests, especially in a multivariate setting, is to use a parametric bootstrap. Although very easy to implement, the parametric bootstrap can become very computationally expensive as the sample size, the number of parameters, or the dimension of the data increase. An alternative resampling technique based on a fast weighted bootstrap is proposed in this paper, and is studied both theoretically and empirically. The outcome of this work is a generic and computationally efficient multiplier goodness‐of‐fit procedure that can be used as a large‐sample alternative to the parametric bootstrap. In order to approximately determine how large the sample size needs to be for the parametric and weighted bootstraps to have roughly equivalent powers, extensive Monte Carlo experiments are carried out in dimension one, two and three, and for models containing up to nine parameters. The computational gains resulting from the use of the proposed multiplier goodness‐of‐fit procedure are illustrated on trivariate financial data. A by‐product of this work is a fast large‐sample goodness‐of‐fit procedure for the bivariate and trivariate t distribution whose degrees of freedom are fixed. The Canadian Journal of Statistics 40: 480–500; 2012 © 2012 Statistical Society of Canada 相似文献
12.
13.
14.
15.
In this article, we consider the problem of seeking locally optimal designs for nonlinear dose‐response models with binary outcomes. Applying the theory of Tchebycheff Systems and other algebraic tools, we show that the locally D‐, A‐, and c‐optimal designs for three binary dose‐response models are minimally supported in finite, closed design intervals. The methods to obtain such designs are presented along with examples. The efficiencies of these designs are also discussed. The Canadian Journal of Statistics 46: 336–354; 2018 © 2018 Statistical Society of Canada 相似文献
16.
17.
Marwan Zidan Jung‐Chao Wang Magdalena Niewiadomska‐bugaj 《Revue canadienne de statistique》2011,39(4):690-702
Lachenbruch ( 1976 , 2001 ) introduced two‐part tests for comparison of two means in zero‐inflated continuous data. We are extending this approach and compare k independent distributions (by comparing their means, either overall or the departure from equal proportion of zeros and equal means of nonzero values) by introducing two tests: a two‐part Wald test and a two‐part likelihood ratio test. If the continuous part of the distributions is lognormal then the proposed two test statistics have asymptotically chi‐square distribution with $2(k-1)$ degrees of freedom. A simulation study was conducted to compare the performance of the proposed tests with several well‐known tests such as ANOVA, Welch ( 1951 ), Brown & Forsythe ( 1974 ), Kruskal–Wallis, and one‐part Wald test proposed by Tu & Zhou ( 1999 ). Results indicate that the proposed tests keep the nominal type I error and have consistently best power among all tests being compared. An application to rainfall data is provided as an example. The Canadian Journal of Statistics 39: 690–702; 2011. © 2011 Statistical Society of Canada 相似文献
18.
19.
Testing homogeneity is a fundamental problem in finite mixture models. It has been investigated by many researchers and most of the existing works have focused on the univariate case. In this article, the authors extend the use of the EM‐test for testing homogeneity to multivariate mixture models. They show that the EM‐test statistic asymptotically has the same distribution as a certain transformation of a single multivariate normal vector. On the basis of this result, they suggest a resampling procedure to approximate the P‐value of the EM‐test. Simulation studies show that the EM‐test has accurate type I errors and adequate power, and is more powerful and computationally efficient than the bootstrap likelihood ratio test. Two real data sets are analysed to illustrate the application of our theoretical results. The Canadian Journal of Statistics 39: 218–238; 2011 © 2011 Statistical Society of Canada 相似文献
20.
Longitudinal surveys have emerged in recent years as an important data collection tool for population studies where the primary interest is to examine population changes over time at the individual level. Longitudinal data are often analyzed through the generalized estimating equations (GEE) approach. The vast majority of existing literature on the GEE method; however, is developed under non‐survey settings and are inappropriate for data collected through complex sampling designs. In this paper the authors develop a pseudo‐GEE approach for the analysis of survey data. They show that survey weights must and can be appropriately accounted in the GEE method under a joint randomization framework. The consistency of the resulting pseudo‐GEE estimators is established under the proposed framework. Linearization variance estimators are developed for the pseudo‐GEE estimators when the finite population sampling fractions are small or negligible, a scenario often held for large‐scale surveys. Finite sample performances of the proposed estimators are investigated through an extensive simulation study using data from the National Longitudinal Survey of Children and Youth. The results show that the pseudo‐GEE estimators and the linearization variance estimators perform well under several sampling designs and for both continuous and binary responses. The Canadian Journal of Statistics 38: 540–554; 2010 © 2010 Statistical Society of Canada 相似文献