首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
《Risk analysis》2018,38(7):1490-1501
Several epidemiological studies have demonstrated an association between occupational benzene exposure and increased leukemia risk, in particular acute myeloid leukemia (AML). However, there is still uncertainty as to the risk to the general population from exposure to lower environmental levels of benzene. To estimate the excess risk of leukemia from low‐dose benzene exposure, various methods for incorporating epidemiological data in quantitative risk assessment were utilized. Tobacco smoke was identified as one of the main potential sources of benzene exposure and was the focus of this exposure assessment, allowing further investigation of the role of benzene in smoking‐induced leukemia. Potency estimates for benzene were generated from individual occupational studies and meta‐analysis data, and an exposure assessment for two smoking subgroups (light and heavy smokers) carried out. Subsequently, various techniques, including life‐table analysis, were then used to evaluate both the excess lifetime risk and the contribution of benzene to smoking‐induced leukemia and AML. The excess lifetime risk for smokers was estimated at between two and six additional leukemia deaths in 10,000 and one to three additional AML deaths in 10,000. The contribution of benzene to smoking‐induced leukemia was estimated at between 9% and 24% (UpperCL 14–31%). For AML this contribution was estimated as 11–30% (UpperCL 22–60%). From the assessments carried out here, it appears there is an increased risk of leukemia from low‐level exposure to benzene and that benzene may contribute up to a third of smoking‐induced leukemia. Comparable results from using methods with varying degrees of complexity were generated.  相似文献   

2.
Since motor vehicles are a major air pollution source, urban designs that decrease private automobile use could improve air quality and decrease air pollution health risks. Yet, the relationships among urban form, air quality, and health are complex and not fully understood. To explore these relationships, we model the effects of three alternative development scenarios on annual average fine particulate matter (PM2.5) concentrations in ambient air and associated health risks from PM2.5 exposure in North Carolina's Raleigh‐Durham‐Chapel Hill area. We integrate transportation demand, land‐use regression, and health risk assessment models to predict air quality and health impacts for three development scenarios: current conditions, compact development, and sprawling development. Compact development slightly decreases (?0.2%) point estimates of regional annual average PM2.5 concentrations, while sprawling development slightly increases (+1%) concentrations. However, point estimates of health impacts are in opposite directions: compact development increases (+39%) and sprawling development decreases (?33%) PM2.5‐attributable mortality. Furthermore, compactness increases local variation in PM2.5 concentrations and increases the severity of local air pollution hotspots. Hence, this research suggests that while compact development may improve air quality from a regional perspective, it may also increase the concentration of PM2.5 in local hotspots and increase population exposure to PM2.5. Health effects may be magnified if compact neighborhoods and PM2.5 hotspots are spatially co‐located. We conclude that compactness alone is an insufficient means of reducing the public health impacts of transportation emissions in automobile‐dependent regions. Rather, additional measures are needed to decrease automobile dependence and the health risks of transportation emissions.  相似文献   

3.
Several epidemiological studies have found a weak, but consistent association between lung cancer in nonsmokers and exposure to environmental tobacco smoke (ETS). In addition, a purported link between such exposure and coronary heart disease (CHD) has been of major concern. Although it is biologically plausible that ETS has a contributory role in the induction of lung cancer in nonsmoking individuals, dose-response extrapolation-supported by the more solid database for active smokers-gives an additional risk for lung cancer risk that is more than one order of magnitude lower than that indicated by major positive epidemiological studies. The discrepancy between available epidemiological data and dosimetric estimates seems, to a major part, to reflect certain systematic biases in the former that are difficult to control by statistical analysis when dealing with risks of such low magnitudes. These include, most importantly, misclassification of smoking status, followed by inappropriate selection of controls, as well as certain confounding factors mainly related to lifestyle, and possibly also hereditary disposition. A significant part of an association between lung cancer and exposure to ETS would disappear, if, on the average, 1 patient out of 20 nonsmoking cases had failed to tell the interviewer that he had, in fact, recently stopped smoking. In the large International Agency for Research on Cancer (IARC) multicenter study even lower misclassification rates would abolish the weak, statistically nonsignificant associations that were found. In the former study an apparent significant protective effect from exposure to ETS in childhood with respect to lung cancer later in life was reported, a most surprising finding. The fact that the mutation spectrum of the p53 tumor suppressor gene in lung tumors of ETS-exposed nonsmokers generally differs from that found in tumors of active smokers lends additional support to the notion that the majority of tumors found in ETS-exposed nonsmokers have nothing to do with tobacco smoke. The one-sided preoccupation with ETS as a causative factor of lung cancer in nonsmokers may seriously hinder the elucidation of the multifactorial etiology of these tumors. Due to the high prevalence of cardiovascular disease in the population, even a modest causal association with ETS would, if valid, constitute a serious public health problem. By pooling data from 20 published studies on ETS and heart disease, some of which reported higher risks than is known to be caused by active smoking, a statistically significant association with spousal smoking is obtained. However, in most of these studies, many of the most common confounding risk factors were ignored and there appears to be insufficient evidence to support an association between exposure to ETS and CHD. Further, it seems highly improbable that exposure to a concentration of tobacco smoke at a level that is generally much less than 1% of that inhaled by a smoker could result in an excess risk for CHD that-as has been claimed-is some 30% to 50% of that found in active smokers. There are certainly valid reasons to limit exposure to ETS as well as to other air pollutants in places such as offices and homes in order to improve indoor air quality. This goal can be achieved, however, without the introduction of an extremist legislation based on a negligible risk of lung cancer as well as an unsupported and highly hypothetical risk for CHD.  相似文献   

4.
Three modeling systems were used to estimate human health risks from air pollution: two versions of MNRiskS (for Minnesota Risk Screening), and the USEPA National Air Toxics Assessment (NATA). MNRiskS is a unique cumulative risk modeling system used to assess risks from multiple air toxics, sources, and pathways on a local to a state‐wide scale. In addition, ambient outdoor air monitoring data were available for estimation of risks and comparison with the modeled estimates of air concentrations. Highest air concentrations and estimated risks were generally found in the Minneapolis‐St. Paul metropolitan area and lowest risks in undeveloped rural areas. Emissions from mobile and area (nonpoint) sources created greater estimated risks than emissions from point sources. Highest cancer risks were via ingestion pathway exposures to dioxins and related compounds. Diesel particles, acrolein, and formaldehyde created the highest estimated inhalation health impacts. Model‐estimated air concentrations were generally highest for NATA and lowest for the AERMOD version of MNRiskS. This validation study showed reasonable agreement between available measurements and model predictions, although results varied among pollutants, and predictions were often lower than measurements. The results increased confidence in identifying pollutants, pathways, geographic areas, sources, and receptors of potential concern, and thus provide a basis for informing pollution reduction strategies and focusing efforts on specific pollutants (diesel particles, acrolein, and formaldehyde), geographic areas (urban centers), and source categories (nonpoint sources). The results heighten concerns about risks from food chain exposures to dioxins and PAHs. Risk estimates were sensitive to variations in methodologies for treating emissions, dispersion, deposition, exposure, and toxicity.  相似文献   

5.
Air pollution has been linked to an increased risk of several respiratory diseases in children, especially respiratory tract infections. The present study aims to evaluate the association between pediatric emergency department (PED) presentations for bronchiolitis and air pollution. PED presentations due to bronchiolitis in children aged less than 1 year were retrospectively collected from 2007 to 2018 in Padova, Italy, together with daily environmental data. A conditional logistic regression based on a time-stratified case-crossover design was performed to evaluate the association between PED presentations and exposure to NO2, PM2.5, and PM10. Models were adjusted for temperature, relative humidity, atmospheric pressure, and public holidays. Delayed effects in time were evaluated using distributed lag non-linear models. Odds ratio for lagged exposure from 0 to 14 days were obtained. Overall, 2251 children presented to the PED for bronchiolitis. Infants’ exposure to higher concentrations of PM10 and PM2.5 in the 5 days before the presentation to the PED increased the risk of accessing the PED by more than 10%, whereas high concentrations of NO2 between 2 and 12 days before the PED presentation were associated with an increased risk of up to 30%. The association between pollutants and infants who required hospitalization was even greater. A cumulative effect of NO2 among the 2 weeks preceding the presentation was also observed. In summary, PM and NO2 concentrations are associated with PED presentations and hospitalizations for bronchiolitis. Exposure of infants to air pollution could damage the respiratory tract mucosa, facilitating viral infections and exacerbating symptoms.  相似文献   

6.
Inappropriate measures of exposure, including inadequate consideration of latency in the analysis of chronic effects of air pollution, may lead to overestimation of the impact of air pollution on health effects. A relatively simple way to check the plausibility of results on chronic effects of air pollution would be to report in parallel the smoking‐associated risks.  相似文献   

7.
8.
The purpose of this investigation was to estimate excess lifetime risk of lung cancer death resulting from occupational exposure to hexavalent-chromium-containing dusts and mists. The mortality experience in a previously studied cohort of 2,357 chromate chemical production workers with 122 lung cancer deaths was analyzed with Poisson regression methods. Extensive records of air samples evaluated for water-soluble total hexavalent chromium were available for the entire employment history of this cohort. Six different models of exposure-response for hexavalent chromium were evaluated by comparing deviances and inspection of cubic splines. Smoking (pack-years) imputed from cigarette use at hire was included in the model. Lifetime risks of lung cancer death from exposure to hexavalent chromium (assuming up to 45 years of exposure) were estimated using an actuarial calculation that accounts for competing causes of death. A linear relative rate model gave a good and readily interpretable fit to the data. The estimated rate ratio for 1 mg/m3-yr of cumulative exposure to hexavalent chromium (as CrO3), with a lag of five years, was RR=2.44 (95% CI=1.54-3.83). The excess lifetime risk of lung cancer death from exposure to hexavalent chromium at the current OSHA permissible exposure limit (PEL) (0.10 mg/m3) was estimated to be 255 per 1,000 (95% CI: 109-416). This estimate is comparable to previous estimates by U.S. EPA, California EPA, and OSHA using different occupational data. Our analysis predicts that current occupational standards for hexavalent chromium permit a lifetime excess risk of dying of lung cancer that exceeds 1 in 10, which is consistent with previous risk assessments.  相似文献   

9.
This study examined factors affecting risk estimates and tolerance among persons directly exposed to environmental health risks. Data were gathered from questionnaires distributed at public hearings regarding proposed air pollution standards for an arsenic emitting copper smelter located in Tacoma, Washington. Approximately 80% of the area residents who attended the hearings completed the questionnaires, and the responses of 347 subjects were analyzed. Results indicated that informal risk estimates and risk tolerance were closely associated with judged benefits of the hazard source, acceptance or denial of vulnerability, judgments of exposure voluntariness, and environmental attitudes. Neither factual knowledge of formal risk estimates and proposed standards nor residential distance from the smelter was found to be closely related to risk tolerance or informal risk estimates. Implications of the results are discussed in relation to past and future studies of reactions to risk, and in relation to risk management policy and practice.  相似文献   

10.
Quantitative knowledge about health damage due to air pollution is an important element in analyses of cost-effective abatement strategies, and is also essential for setting Air Quality Standards. Epidemiological studies, in spite of the numerous problems connected to them, provide a reasonable basis for exposure-response functions in this context. On the basis of a literature review, exposure-response functions that relate ambient air pollutant concentrations to the frequency of various health effects are recommended in this paper. The following end-points were examined: Acute and chronic respiratory symptoms in children and adults, crude mortality, and lung cancer incidence. The effects are attributed to one indicator component, which in most cases is particles. A calculation procedure is suggested which makes it possible to estimate excess annual symptom-days for short-term effects using the annual average concentration.  相似文献   

11.
Risk assessment methodologies for passive smoking-induced lung cancer   总被引:1,自引:0,他引:1  
Risk assessment methodologies have been successfully applied to control societal risk from outdoor air pollutants. They are now being applied to indoor air pollutants such as environmental tobacco smoke (ETS) and radon. Nonsmokers' exposures to ETS have been assessed based on dosimetry of nicotine, its metabolite, continine, and on exposure to the particulate phase of ETS. Lung cancer responses have been based on both the epidemiology of active and of passive smoking. Nine risk assessments of nonsmokers' lung cancer risk from exposure to ETS have been performed. Some have estimated risks for lifelong nonsmokers only; others have included ex-smokers; still others have estimated total deaths from all causes. To facilitate interstudy comparison, in some cases lung cancers had to be interpolated from a total, or the authors' original estimate had to be adjusted to include ex-smokers. Further, all estimates were adjusted to 1988. Excluding one study whose estimate differs from the mean of the others by two orders of magnitude, the remaining risk assessments are in remarkable agreement. The mean estimate is approximately 5000 +/- 2400 nonsmokers' lung cancer deaths (LCDSs) per year. This is a 25% greater risk to nonsmokers than is indoor radon, and is about 57 times greater than the combined estimated cancer risk from all the hazardous outdoor air pollutants currently regulated by the Environmental Protection Agency: airborne radionuclides, asbestos, arsenic, benzene, coke oven emissions, and vinyl chloride.  相似文献   

12.
Questions persist regarding assessment of workers’ exposures to products containing low levels of benzene, such as mineral spirit solvent (MSS). This study summarizes previously unpublished data for parts‐washing activities, and evaluates potential daily and lifetime cumulative benzene exposures incurred by workers who used historical and current formulations of a recycled mineral spirits solvent in manual parts washers. Measured benzene concentrations in historical samples from parts‐washing operations were frequently below analytical detection limits. To better assess benzene exposure among these workers, air‐to‐solvent concentration ratios measured for toluene, ethylbenzene, and xylenes (TEX) were used to predict those for benzene based on a statistical model, conditional on physical‐chemical theory supported by new thermodynamic calculations of TEX and benzene activity coefficients in a modeled MSS‐type solvent. Using probabilistic methods, the distributions of benzene concentrations were then combined with distributions of other exposure parameters to estimate eight‐hour time‐weighted average (TWA) exposure concentration distributions and corresponding daily respiratory dose distributions for workers using these solvents in parts washers. The estimated 50th (95th) percentile of the daily respiratory dose and corresponding eight‐hour TWA air concentration for workers performing parts washing are 0.079 (0.77) mg and 0.0030 (0.028) parts per million by volume (ppm) for historical solvent, and 0.020 (0.20) mg and 0.00078 (0.0075) ppm for current solvent, respectively. Both 95th percentile eight‐hour TWA respiratory exposure estimates for solvent formulations are less than 10% of the current Occupational Safety and Health Administration permissible exposure limit of 1.0 ppm for benzene.  相似文献   

13.
Of the 188 hazardous air pollutants (HAPs) listed in the Clean Air Act, only a handful have information on human health effects, derived primarily from animal and occupational studies. Lack of consistent monitoring data on ambient air toxics makes it difficult to assess the extent of low-level, chronic, ambient exposures to HAPs that could affect human health, and limits attempts to prioritize and evaluate policy initiatives for emissions reduction. Modeled outdoor HAP concentration estimates from the U.S. Environmental Protection Agency's Cumulative Exposure Project were used to characterize the extent of the air toxics problem in California for the base year of 1990. These air toxics concentration estimates were used with chronic toxicity data to estimate cancer and noncancer hazards for individual HAPs and the risks posed by multiple pollutants. Although hazardous air pollutants are ubiquitous in the environment, potential cancer and noncancer health hazards posed by ambient exposures are geographically concentrated in three urbanized areas and in a few rural counties. This analysis estimated a median excess individual cancer risk of 2.7E-4 for all air toxics concentrations and 8600 excess lifetime cancer cases, 70% of which were attributable to four pollutants: polycyclic organic matter, 1,3 butadiene, formaldehyde, and benzene. For noncancer effects, the analysis estimated a total hazard index representing the combined effect of all HAPs considered. Each pollutant contributes to the index a ratio of estimated concentration to reference concentration. The median value of the index across census tracts was 17, due primarily to acrolein and chromium concentration estimates. On average, HAP concentrations and cancer and noncancer health risks originate mostly from area and mobile source emissions, although there are several locations in the state where point sources account for a large portion of estimated concentrations and health risks. Risk estimates from this study can provide guidance for prioritizing research, monitoring, and regulatory intervention activities to reduce potential hazards to the general population. Improved ambient monitoring efforts can help clarify uncertainties inherent in this analysis.  相似文献   

14.
Environmental tobacco smoke (ETS)has recently been determined by U.S. environmental and occupational health authorities to be a human carcinogen. We develop a model which permits using atmospheric nicotine measurements to estimate nonsmokers’ETS lung cancer risks in individual workplaces for the first time. We estimate that during the 1980s, the U.S. nonsmoking adult population's median nicotine lung exposure (homes and workplaces combined)was 143 micrograms (μg)of nicotine daily, and that most-exposed adult nonsmokers inhaled 1430 μg/day. These exposure estimates are validated by pharmacokinetic modeling which yields the corresponding steady-state dose of the nicotine metabolite, cotinine. For U.S. adult nonsmokers of working age, we estimate median cotinine values of about 1.0 nanogram per milliliter (ng/ml)in plasma, and 6.2 ng/ml in urine; for most-exposed nonsmokers, we estimate cotinine concentrations of about 10 ng/ml in plasma and 62 ng/ml in urine. These values are consistent to within 15% of the cotinine values observed in contemporaneous clinical epidemiological studies. Corresponding median risk from ETS exposure in U.S. nonsmokers during the 1980s is estimated at about two lung cancer deaths (LCDs)per 1000 at risk, and for most-exposed nonsmokers, about two LCDs per 100. Risks abroad appear similar. Modeling of the lung cancer mortality risk from passive smoking suggests that de minimis [i.e., “acceptable” (10-6)], risk occurs at an 8-hr time-weighted-average exposure concentration of 7.5 nanograms of ETS nicotine per cubic meter of workplace air for a working lifetime of 40 years. This model is based upon a linear exposure-response relationship validated by physical, clinical, and epidemiological data. From available data, it appears that workplaces without effective smoking policies considerably exceed this de minimis risk standard. For a substantial fraction of the 59 million nonsmoking workers in the U.S., current workplace exposure to ETS also appears to pose risks exceeding the de manifestos risk level above which carcinogens are strictly regulated by the federal government.  相似文献   

15.
Twenty-four-hour recall data from the Continuing Survey of Food Intake by Individuals (CSFII) are frequently used to estimate dietary exposure for risk assessment. Food frequency questionnaires are traditional instruments of epidemiological research; however, their application in dietary exposure and risk assessment has been limited. This article presents a probabilistic method of bridging the National Health and Nutrition Examination Survey (NHANES) food frequency and the CSFII data to estimate longitudinal (usual) intake, using a case study of seafood mercury exposures for two population subgroups (females 16 to 49 years and children 1 to 5 years). Two hundred forty-nine CSFII food codes were mapped into 28 NHANES fish/shellfish categories. FDA and state/local seafood mercury data were used. A uniform distribution with minimum and maximum blood-diet ratios of 0.66 to 1.07 was assumed. A probabilistic assessment was conducted to estimate distributions of individual 30-day average daily fish/shellfish intakes, methyl mercury exposure, and blood levels. The upper percentile estimates of fish and shellfish intakes based on the 30-day daily averages were lower than those based on two- and three-day daily averages. These results support previous findings that distributions of "usual" intakes based on a small number of consumption days provide overestimates in the upper percentiles. About 10% of the females (16 to 49 years) and children (1 to 5 years) may be exposed to mercury levels above the EPA's RfD. The predicted 75th and 90th percentile blood mercury levels for the females in the 16-to-49-year group were similar to those reported by NHANES. The predicted 90th percentile blood mercury levels for children in the 1-to-5-year subgroup was similar to NHANES and the 75th percentile estimates were slightly above the NHANES.  相似文献   

16.
Cakmak  Sabit  Burnett  Richard T.  Krewski  Daniel 《Risk analysis》1999,19(3):487-496
The association between daily fluctuations in ambient particulate matter and daily variations in nonaccidental mortality have been extensively investigated. Although it is now widely recognized that such an association exists, the form of the concentration–response model is still in question. Linear, no threshold and linear threshold models have been most commonly examined. In this paper we considered methods to detect and estimate threshold concentrations using time series data of daily mortality rates and air pollution concentrations. Because exposure is measured with error, we also considered the influence of measurement error in distinguishing between these two completing model specifications. The methods were illustrated on a 15-year daily time series of nonaccidental mortality and particulate air pollution data in Toronto, Canada. Nonparametric smoothed representations of the association between mortality and air pollution were adequate to graphically distinguish between these two forms. Weighted nonlinear regression methods for relative risk models were adequate to give nearly unbiased estimates of threshold concentrations even under conditions of extreme exposure measurement error. The uncertainty in the threshold estimates increased with the degree of exposure error. Regression models incorporating threshold concentrations could be clearly distinguished from linear relative risk models in the presence of exposure measurement error. The assumption of a linear model given that a threshold model was the correct form usually resulted in overestimates in the number of averted premature deaths, except for low threshold concentrations and large measurement error.  相似文献   

17.
Following a comprehensive evaluation of the health risks of radon, the U.S. National Research Council (US-NRC) concluded that the radon inside the homes of U.S. residents is an important cause of lung cancer. To assess lung cancer risks associated with radon exposure in Canadian homes, we apply the new (US-NRC) techniques, tailoring assumptions to the Canadian context. A two-dimensional uncertainty analysis is used to provide both population-based (population attributable risk, PAR; excess lifetime risk ratio, ELRR; and life-years lost, LYL) and individual-based (ELRR and LYL) estimates. Our primary results obtained for the Canadian population reveal mean estimates for ELRR, PAR, and LYL are 0.08, 8%, and 0.10 years, respectively. Results are also available and stratified by smoking status (ever versus never). Conveniently, the three indices (ELRR, PAR, and LYL) reveal similar output uncertainty (geometric standard deviation, GSD approximately 1.3), and in the case of ELRR and LYL, comparable variability and uncertainty combined (GSD approximately 4.2). Simplifying relationships are identified between ELRR, LYL, PAR, and the age-specific excess rate ratio (ERR), which suggest a way to scale results from one population to another. This insight is applied in scaling our baseline results to obtain gender-specific estimates, as well as in simplifying and illuminating sensitivity analysis.  相似文献   

18.
There is considerable debate as to the most appropriate metric for characterizing the mortality impacts of air pollution. Life expectancy has been advocated as an informative measure. Although the life‐table calculus is relatively straightforward, it becomes increasingly cumbersome when repeated over large numbers of geographic areas and for multiple causes of death. Two simplifying assumptions were evaluated: linearity of the relation between excess rate ratio and change in life expectancy, and additivity of cause‐specific life‐table calculations. We employed excess rate ratios linking PM2.5 and mortality from cerebrovascular disease, chronic obstructive pulmonary disease, ischemic heart disease, and lung cancer derived from a meta‐analysis of worldwide cohort studies. As a sensitivity analysis, we employed an integrated exposure response function based on the observed risk of PM2.5 over a wide range of concentrations from ambient exposure, indoor exposure, second‐hand smoke, and personal smoking. Impacts were estimated in relation to a change in PM2.5 from 19.5 μg/m3 estimated for Toronto to an estimated natural background concentration of 1.8 μg/m3. Estimated changes in life expectancy varied linearly with excess rate ratios, but at higher values the relationship was more accurately represented as a nonlinear function. Changes in life expectancy attributed to specific causes of death were additive with maximum error of 10%. Results were sensitive to assumptions about the air pollution concentration below which effects on mortality were not quantified. We have demonstrated valid approximations comprising expression of change in life expectancy as a function of excess mortality and summation across multiple causes of death.  相似文献   

19.
《Risk analysis》2018,38(7):1474-1489
Complex statistical models fitted to data from studies of atomic bomb survivors are used to estimate the human health effects of ionizing radiation exposures. We describe and illustrate an approach to estimate population risks from ionizing radiation exposure that relaxes many assumptions about radiation‐related mortality. The approach draws on developments in methods for causal inference. The results offer a different way to quantify radiation's effects and show that conventional estimates of the population burden of excess cancer at high radiation doses are driven strongly by projecting outside the range of current data. Summary results obtained using the proposed approach are similar in magnitude to those obtained using conventional methods, although estimates of radiation‐related excess cancers differ for many age, sex, and dose groups. At low doses relevant to typical exposures, the strength of evidence in data is surprisingly weak. Statements regarding human health effects at low doses rely strongly on the use of modeling assumptions.  相似文献   

20.
To analyze the loss of life expectancy (LLE) due to air pollution and the associated social cost, a dynamic model was developed that took into account the decrease of risk after the termination of an exposure to pollution. A key parameter was the time constant for the decrease of risk, for which estimates from studies of smoking were used. A sensitivity analysis showed that the precise value of the time constant(s) was not critical for the resulting LLE. An interesting aspect of the model was that the relation between population total LLE and PM2.5 concentration was numerically almost indistinguishable from a straight line, even though the functional dependence was nonlinear. This essentially linear behavior implies that the detailed history of a change in concentration does not matter, except for the effects of discounting. This model was used to correct the data of the largest study of chronic mortality for variations in past exposure, performed by Pope et al. in 1995; the correction factor was shown to depend on assumptions about the relative toxicity of the components of PM2.5. In the European Union, an increment of 1 microg/m3 of PM2.5 for 1 year implies an average LLE of 0.22 days per person. With regard to the social cost of an air pollution pulse, it was found that for typical discount rates (3% to 8% real) the cost was reduced by a factor of about 0.4 to 0.6 relative to the case with zero discount rate, if the value of a life year was taken as given; if the value of a life year was calculated from the "value of statistical life" by assuming the latter as a series of discounted annual values, the cost varied by at most +/-20% relative to the case with zero discount rate. To assess the uncertainties, this study also examined how the LLE depended on the demographics (mortality and age pyramid) of a population, and how it would change if the relative risk varied with age, in the manner suggested by smoking studies. These points were found to have a relatively small effect (compared to the epidemiological uncertainties) on the calculated LLE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号