首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT

This paper deals with Bayes, robust Bayes, and minimax predictions in a subfamily of scale parameters under an asymmetric precautionary loss function. In Bayesian statistical inference, the goal is to obtain optimal rules under a specified loss function and an explicit prior distribution over the parameter space. However, in practice, we are not able to specify the prior totally or when a problem must be solved by two statisticians, they may agree on the choice of the prior but not the values of the hyperparameters. A common approach to the prior uncertainty in Bayesian analysis is to choose a class of prior distributions and compute some functional quantity. This is known as Robust Bayesian analysis which provides a way to consider the prior knowledge in terms of a class of priors Γ for global prevention against bad choices of hyperparameters. Under a scale invariant precautionary loss function, we deal with robust Bayes predictions of Y based on X. We carried out a simulation study and a real data analysis to illustrate the practical utility of the prediction procedure.  相似文献   

2.
We consider robust Bayesian prediction of a function of unobserved data based on observed data under an asymmetric loss function. Under a general linear-exponential posterior risk function, the posterior regret gamma-minimax (PRGM), conditional gamma-minimax (CGM), and most stable (MS) predictors are obtained when the prior distribution belongs to a general class of prior distributions. We use this general form to find the PRGM, CGM, and MS predictors of a general linear combination of the finite population values under LINEX loss function on the basis of two classes of priors in a normal model. Also, under the general ε-contamination class of prior distributions, the PRGM predictor of a general linear combination of the finite population values is obtained. Finally, we provide a real-life example to predict a finite population mean and compare the estimated risk and risk bias of the obtained predictors under the LINEX loss function by a simulation study.  相似文献   

3.
Robust Bayesian analysis is connected with the effect of changing a prior within a class Γ instead of being specified exactly. The multiplicity of prior leads to a collection or a range of Bayes actions. It is interesting not only to investigate the range of estimators but also to recommend the optimal procedures. In this article, we deal with posterior regret Γ-minimax (PRGM) estimation and prediction of an unknown parameter θ and a value of a random variable Y under entropy loss function. Applications for k-records such as estimation and prediction problems are discussed.  相似文献   

4.
In this article, the Bayes estimates of two-parameter gamma distribution are considered. It is well known that the Bayes estimators of the two-parameter gamma distribution do not have compact form. In this paper, it is assumed that the scale parameter has a gamma prior and the shape parameter has any log-concave prior, and they are independently distributed. Under the above priors, we use Gibbs sampling technique to generate samples from the posterior density function. Based on the generated samples, we can compute the Bayes estimates of the unknown parameters and can also construct HPD credible intervals. We also compute the approximate Bayes estimates using Lindley's approximation under the assumption of gamma priors of the shape parameter. Monte Carlo simulations are performed to compare the performances of the Bayes estimators with the classical estimators. One data analysis is performed for illustrative purposes. We further discuss the Bayesian prediction of future observation based on the observed sample and it is seen that the Gibbs sampling technique can be used quite effectively for estimating the posterior predictive density and also for constructing predictive intervals of the order statistics from the future sample.  相似文献   

5.
In reliability theory or survival analysis, selecting the largest mean among many exponential distributions is an important issue. Such a problem can also be viewed as a model selection problem via the Bayesian approach. It is well known that Bayes factors under proper priors have been very successful in Bayesian model selection or testing problems. However, Bayes factors are typically invalid with respect to improper noninformative priors. Objective Bayesian criteria are thus desired. In this work, we consider to use the expected posterior priors originally proposed by Pérez and Berger (2002 Pérez , J. M. , Berger , J. ( 2002 ). Expected posterior prior distributions for model selection . Biometrika 89 : 491512 .[Crossref], [Web of Science ®] [Google Scholar]) to select the largest exponential mean. Specific expected posterior priors are derived in recursive formulas. Some simulation results are also given to illustrate the method.  相似文献   

6.
The problem of approximating an interval null or imprecise hypothesis test by a point null or precise hypothesis test under a Bayesian framework is considered. In the literature, some of the methods for solving this problem have used the Bayes factor for testing a point null and justified it as an approximation to the interval null. However, many authors recommend evaluating tests through the posterior odds, a Bayesian measure of evidence against the null hypothesis. It is of interest then to determine whether similar results hold when using the posterior odds as the primary measure of evidence. For the prior distributions under which the approximation holds with respect to the Bayes factor, it is shown that the posterior odds for testing the point null hypothesis does not approximate the posterior odds for testing the interval null hypothesis. In fact, in order to obtain convergence of the posterior odds, a number of restrictive conditions need to be placed on the prior structure. Furthermore, under a non-symmetrical prior setup, neither the Bayes factor nor the posterior odds for testing the imprecise hypothesis converges to the Bayes factor or posterior odds respectively for testing the precise hypothesis. To rectify this dilemma, it is shown that constraints need to be placed on the priors. In both situations, the class of priors constructed to ensure convergence of the posterior odds are not practically useful, thus questioning, from a Bayesian perspective, the appropriateness of point null testing in a problem better represented by an interval null. The theories developed are also applied to an epidemiological data set from White et al. (Can. Veterinary J. 30 (1989) 147–149.) in order to illustrate and study priors for which the point null hypothesis test approximates the interval null hypothesis test. AMS Classification: Primary 62F15; Secondary 62A15  相似文献   

7.
Let X has a p-dimensional normal distribution with mean vector θ and identity covariance matrix I. In a compound decision problem consisting of squared-error estimation of θ, Strawderman (1971) placed a Beta (α, 1) prior distribution on a normal class of priors to produce a family of Bayes minimax estimators. We propose an incomplete Gamma(α, β) prior distribution on the same normal class of priors to produce a larger family of Bayes minimax estimators. We present the results of a Monte Carlo study to demonstrate the reduced risk of our estimators in comparison with the Strawderman estimators when θ is away from the zero vector.  相似文献   

8.
In this paper, maximum likelihood and Bayesian approaches have been used to obtain the estimation of \(P(X<Y)\) based on a set of upper record values from Kumaraswamy distribution. The existence and uniqueness of the maximum likelihood estimates of the Kumaraswamy distribution parameters are obtained. Confidence intervals, exact and approximate, as well as Bayesian credible intervals are constructed. Bayes estimators have been developed under symmetric (squared error) and asymmetric (LINEX) loss functions using the conjugate and non informative prior distributions. The approximation forms of Lindley (Trabajos de Estadistica 3:281–288, 1980) and Tierney and Kadane (J Am Stat Assoc 81:82–86, 1986) are used for the Bayesian cases. Monte Carlo simulations are performed to compare the different proposed methods.  相似文献   

9.
Simultaneous estimation of p gamma scale-parameters is considered under squared-error loss. The problem of minimizing, subject to uniform risk domination, the Bayes risk (or more generally the posterior expected loss) against certain conjugate or mixtures of conjugate priors is considered. Rather surprisingly, it is shown that the minimization can be done conditionally, thus avoiding variational arguments. Relative savings loss (and a posterior version thereof) are found, and it is found that in the most favorable situations, Bayesian robustness can be achieved without sacrificing substantial subjective Bayesian gains.  相似文献   

10.
Abstract

The shape parameter of Topp–Leone distribution is estimated in this article from the Bayesian viewpoint under the assumption of known scale parameter. Bayes and empirical Bayes estimates of the unknown parameter are proposed under non informative and suitable conjugate priors. These estimates are derived under the assumption of squared and linear-exponential error loss functions. The risk functions of the proposed estimates are derived in analytical forms. It is shown that the proposed estimates are minimax and admissible. The consistency of the proposed estimates under the squared error loss function is also proved. Numerical examples are provided.  相似文献   

11.
This paper develops Bayesian analysis in the context of progressively Type II censored data from the compound Rayleigh distribution. The maximum likelihood and Bayes estimates along with associated posterior risks are derived for reliability performances under balanced loss functions by assuming continuous priors for parameters of the distribution. A practical example is used to illustrate the estimation methods. A simulation study has been carried out to compare the performance of estimates. The study indicates that Bayesian estimation should be preferred over maximum likelihood estimation. In Bayesian estimation, the balance general entropy loss function can be effectively employed for optimal decision-making.  相似文献   

12.
The paper aims to select a suitable prior for the Bayesian analysis of the two-component mixture of the Topp Leone model under doubly censored samples and left censored samples for the first component and right censored samples for the second component. The posterior analysis has been carried out under the assumption of a class of informative and noninformative priors using a couple of loss functions. The comparison among the different Bayes estimators has been made under a simulation study and a real life example. The model comparison criterion has been used to select a suitable prior for the Bayesian analysis. The hazard rate of the Topp Leone mixture model has been compared for a range of parametric values.  相似文献   

13.
In order to robustify posterior inference, besides the use of large classes of priors, it is necessary to consider uncertainty about the sampling model. In this article we suggest that a convenient and simple way to incorporate model robustness is to consider a discrete set of competing sampling models, and combine it with a suitable large class of priors. This set reflects foreseeable departures of the base model, like thinner or heavier tails or asymmetry. We combine the models with different classes of priors that have been proposed in the vast literature on Bayesian robustness with respect to the prior. Also we explore links with the related literature of stable estimation and precise measurement theory, now with more than one model entertained. To these ends it will be necessary to introduce a procedure for model comparison that does not depend on an arbitrary constant or scale. We utilize a recent development on automatic Bayes factors with self-adjusted scale, the ‘intrinsic Bayes factor’ (Berger and Pericchi, Technical Report, 1993).  相似文献   

14.
We consider Khamis' (1960) Laguerre expansion with gamma weight function as a class of “near-gamma” priors (K-prior) to obtain the Bayes predictor of a finite population mean under the Poisson regression superpopulation model using Zellner's balanced loss function (BLF). Kullback–Leibler (K-L) distance between gamma and some K-priors is tabulated to examine the quantitative prior robustness. Some numerical investigations are also conducted to illustrate the effects of a change in skewness and/or kurtosis on the Bayes predictor and the corresponding minimal Bayes predictive expected loss (MBPEL). Loss robustness with respect to the class of BLFs is also examined in terms of relative savings loss (RSL).  相似文献   

15.
In this work, the problem of transformation and simultaneous variable selection is thoroughly treated via objective Bayesian approaches by the use of default Bayes factor variants. Four uniparametric families of transformations (Box–Cox, Modulus, Yeo-Johnson and Dual), denoted by T, are evaluated and compared. The subjective prior elicitation for the transformation parameter \(\lambda _T\), for each T, is not a straightforward task. Additionally, little prior information for \(\lambda _T\) is expected to be available, and therefore, an objective method is required. The intrinsic Bayes factors and the fractional Bayes factors allow us to incorporate default improper priors for \(\lambda _T\). We study the behaviour of each approach using a simulated reference example as well as two real-life examples.  相似文献   

16.
It is shown that when a parameter lying in a sufficiently small interval is to be estimated in a family of uniform distributions, a two point prior is least favourable under squared error loss. The unique Bayes estimator with respect to this prior is minimax. The Γ-minimax estimator is derived for sets Γ of priors consisting of all priors that give fixed probabilities to two specified subintervals of the parameter space if a two point prior is least favourable in Γ.  相似文献   

17.
In this article, we develop an empirical Bayesian approach for the Bayesian estimation of parameters in four bivariate exponential (BVE) distributions. We have opted for gamma distribution as a prior for the parameters of the model in which the hyper parameters have been estimated based on the method of moments and maximum likelihood estimates (MLEs). A simulation study was conducted to compute empirical Bayesian estimates of the parameters and their standard errors. We use moment estimators or MLEs to estimate the hyper parameters of the prior distributions. Furthermore, we compare the posterior mode of parameters obtained by different prior distributions and the Bayesian estimates based on gamma priors are very close to the true values as compared to improper priors. We use MCMC method to obtain the posterior mean and compared the same using the improper priors and the classical estimates, MLEs.  相似文献   

18.
We consider an empirical Bayes approach to standard nonparametric regression estimation using a nonlinear wavelet methodology. Instead of specifying a single prior distribution on the parameter space of wavelet coefficients, which is usually the case in the existing literature, we elicit the ?-contamination class of prior distributions that is particularly attractive to work with when one seeks robust priors in Bayesian analysis. The type II maximum likelihood approach to prior selection is used by maximizing the predictive distribution for the data in the wavelet domain over a suitable subclass of the ?-contamination class of prior distributions. For the prior selected, the posterior mean yields a thresholding procedure which depends on one free prior parameter and it is level- and amplitude-dependent, thus allowing better adaptation in function estimation. We consider an automatic choice of the free prior parameter, guided by considerations on an exact risk analysis and on the shape of the thresholding rule, enabling the resulting estimator to be fully automated in practice. We also compute pointwise Bayesian credible intervals for the resulting function estimate using a simulation-based approach. We use several simulated examples to illustrate the performance of the proposed empirical Bayes term-by-term wavelet scheme, and we make comparisons with other classical and empirical Bayes term-by-term wavelet schemes. As a practical illustration, we present an application to a real-life data set that was collected in an atomic force microscopy study.  相似文献   

19.
On Optimality of Bayesian Wavelet Estimators   总被引:2,自引:0,他引:2  
Abstract.  We investigate the asymptotic optimality of several Bayesian wavelet estimators, namely, posterior mean, posterior median and Bayes Factor, where the prior imposed on wavelet coefficients is a mixture of a mass function at zero and a Gaussian density. We show that in terms of the mean squared error, for the properly chosen hyperparameters of the prior, all the three resulting Bayesian wavelet estimators achieve optimal minimax rates within any prescribed Besov space     for p  ≥ 2. For 1 ≤  p  < 2, the Bayes Factor is still optimal for (2 s +2)/(2 s +1) ≤  p  < 2 and always outperforms the posterior mean and the posterior median that can achieve only the best possible rates for linear estimators in this case.  相似文献   

20.
In this paper, we present a novel approach to estimating distribution functions, which combines ideas from Bayesian nonparametric inference, decision theory and robustness. Given a sample from a Dirichlet process on the space (𝒳, A), with parameter η in a class of measures, the sampling distribution function is estimated according to some optimality criteria (mainly minimax and regret), when a quadratic loss function is assumed. Estimates are then compared in two examples: one with simulated data and one with gas escapes data in a city network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号