首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let \(k, m\) be positive integers, let \(G\) be a graph with \(m\) edges, and let \(h(m)=\sqrt{2m+\frac{1}{4}}-\frac{1}{2}\). Bollobás and Scott asked whether \(G\) admits a \(k\)-partition \(V_{1}, V_{2}, \ldots , V_{k}\) such that \(\max _{1\le i\le k} \{e(V_{i})\}\le \frac{m}{k^2}+\frac{k-1}{2k^2}h(m)\) and \(e(V_1, \ldots , V_k)\ge {k-1\over k} m +{k-1\over 2k}h(m) -\frac{(k-2)^{2}}{8k}\). In this paper, we present a positive answer to this problem on the graphs with large number of edges and small number of vertices with degrees being multiples of \(k\). Particularly, if \(d\) is not a multiple of \(k\) and \(G\) is \(d\)-regular with \(m\ge {9\over 128}k^4(k-2)^2\), then \(G\) admits a \(k\)-partition as desired. We also improve an earlier result by showing that \(G\) admits a partition \(V_{1}, V_{2}, \ldots , V_{k}\) such that \(e(V_{1},V_{2},\ldots ,V_{k})\ge \frac{k-1}{k}m+\frac{k-1}{2k}h(m)-\frac{(k-2)^{2}}{2(k-1)}\) and \(\max _{1\le i\le k}\{e(V_{i})\}\le \frac{m}{k^{2}}+\frac{k-1}{2k^{2}}h(m)\).  相似文献   

2.
For a set of nonnegative integers \(c_1, \ldots , c_k\), a \((c_1, c_2,\ldots , c_k)\)-coloring of a graph G is a partition of V(G) into \(V_1, \ldots , V_k\) such that for every i, \(1\le i\le k, G[V_i]\) has maximum degree at most \(c_i\). We prove that all planar graphs without 4-cycles and no less than two edges between triangles are (2, 0, 0)-colorable.  相似文献   

3.
A coloring of a graph \(G=(V,E)\) is a partition \(\{V_1, V_2, \ldots , V_k\}\) of V into independent sets or color classes. A vertex \(v\in V_i\) is a Grundy vertex if it is adjacent to at least one vertex in each color class \(V_j\) for every \(j<i\). A coloring is a Grundy coloring if every vertex is a Grundy vertex, and the Grundy number \(\Gamma (G)\) of a graph G is the maximum number of colors in a Grundy coloring. We provide two new upper bounds on Grundy number of a graph and a stronger version of the well-known Nordhaus-Gaddum theorem. In addition, we give a new characterization for a \(\{P_{4}, C_4\}\)-free graph by supporting a conjecture of Zaker, which says that \(\Gamma (G)\ge \delta (G)+1\) for any \(C_4\)-free graph G.  相似文献   

4.
To save energy and alleviate interference in a wireless sensor network, connected dominating set (CDS) has been proposed as the virtual backbone. Since nodes may fail due to accidental damage or energy depletion, it is desirable to construct a fault tolerant CDS, which can be modeled as a \(k\)-connected \(m\)-fold dominating set \(((k,m)\)-CDS for short): a subset of nodes \(C\subseteq V(G)\) is a \((k,m)\)-CDS of \(G\) if every node in \(V(G)\setminus C\) is adjacent with at least \(m\) nodes in \(C\) and the subgraph of \(G\) induced by \(C\) is \(k\)-connected.In this paper, we present an approximation algorithm for the minimum \((2,m)\)-CDS problem with \(m\ge 2\). Based on a \((1,m)\)-CDS, the algorithm greedily merges blocks until the connectivity is raised to two. The most difficult problem in the analysis is that the potential function used in the greedy algorithm is not submodular. By proving that an optimal solution has a specific decomposition, we managed to prove that the approximation ratio is \(\alpha +2(1+\ln \alpha )\), where \(\alpha \) is the approximation ratio for the minimum \((1,m)\)-CDS problem. This improves on previous approximation ratios for the minimum \((2,m)\)-CDS problem, both in general graphs and in unit disk graphs.  相似文献   

5.
Let \(c_{1},c_{2},\ldots ,c_{k}\) be k non-negative integers. A graph G is \((c_{1},c_{2},\ldots ,c_{k})\)-colorable if the vertex set can be partitioned into k sets \(V_{1},V_{2},\ldots ,V_{k}\) such that for every \(i,1\le i\le k\), the subgraph \(G[V_{i}]\) has maximum degree at most \(c_{i}\). Steinberg (Ann Discret Math 55:211–248, 1993) conjectured that every planar graph without 4- and 5-cycles is 3-colorable. Xu and Wang (Sci Math 43:15–24, 2013) conjectured that every planar graph without 4- and 6-cycles is 3-colorable. In this paper, we prove that every planar graph without 3-cycles adjacent to 4-cycles and without 6-cycles is (1, 1, 0)-colorable, which improves the result of Xu and Wang (Sci Math 43:15–24, 2013), who proved that every planar graph without 4- and 6-cycles is (1, 1, 0)-colorable.  相似文献   

6.
A graph G is \((d_1, d_2)\)-colorable if its vertices can be partitioned into subsets \(V_1\) and \(V_2\) such that in \(G[V_1]\) every vertex has degree at most \(d_1\) and in \(G[V_2]\) every vertex has degree at most \(d_2\). Let \(\mathcal {G}_5\) denote the family of planar graphs with minimum cycle length at least 5. It is known that every graph in \(\mathcal {G}_5\) is \((d_1, d_2)\)-colorable, where \((d_1, d_2)\in \{(2,6), (3,5),(4,4)\}\). We still do not know even if there is a finite positive d such that every graph in \(\mathcal {G}_5\) is (1, d)-colorable. In this paper, we prove that every graph in \(\mathcal {G}_5\) without adjacent 5-cycles is (1, 7)-colorable. This is a partial positive answer to a problem proposed by Choi and Raspaud that is every graph in \(\mathcal {G}_5\;(1, 7)\)-colorable?.  相似文献   

7.
A complete graph is the graph in which every two vertices are adjacent. For a graph \(G=(V,E)\), the complete width of G is the minimum k such that there exist k independent sets \(\mathtt {N}_i\subseteq V\), \(1\le i\le k\), such that the graph \(G'\) obtained from G by adding some new edges between certain vertices inside the sets \(\mathtt {N}_i\), \(1\le i\le k\), is a complete graph. The complete width problem is to decide whether the complete width of a given graph is at most k or not. In this paper we study the complete width problem. We show that the complete width problem is NP-complete on \(3K_2\)-free bipartite graphs and polynomially solvable on \(2K_2\)-free bipartite graphs and on \((2K_2,C_4)\)-free graphs. As a by-product, we obtain the following new results: the edge clique cover problem is NP-complete on \(\overline{3K_2}\)-free co-bipartite graphs and polynomially solvable on \(C_4\)-free co-bipartite graphs and on \((2K_2, C_4)\)-free graphs. We also give a characterization for k-probe complete graphs which implies that the complete width problem admits a kernel of at most \(2^k\) vertices. This provides another proof for the known fact that the edge clique cover problem admits a kernel of at most \(2^k\) vertices. Finally we determine all graphs of small complete width \(k\le 3\).  相似文献   

8.
In this paper we give improved approximation algorithms for some network design problems. In the bounded-diameter or shallow-light \(k\)-Steiner tree problem (SL\(k\)ST), we are given an undirected graph \(G=(V,E)\) with terminals \(T\subseteq V\) containing a root \(r\in T\), a cost function \(c:E\rightarrow \mathbb {R}^+\), a length function \(\ell :E\rightarrow \mathbb {R}^+\), a bound \(L>0\) and an integer \(k\ge 1\). The goal is to find a minimum \(c\)-cost \(r\)-rooted Steiner tree containing at least \(k\) terminals whose diameter under \(\ell \) metric is at most \(L\). The input to the buy-at-bulk \(k\)-Steiner tree problem (BB\(k\)ST) is similar: graph \(G=(V,E)\), terminals \(T\subseteq V\) containing a root \(r\in T\), cost and length functions \(c,\ell :E\rightarrow \mathbb {R}^+\), and an integer \(k\ge 1\). The goal is to find a minimum total cost \(r\)-rooted Steiner tree \(H\) containing at least \(k\) terminals, where the cost of each edge \(e\) is \(c(e)+\ell (e)\cdot f(e)\) where \(f(e)\) denotes the number of terminals whose path to root in \(H\) contains edge \(e\). We present a bicriteria \((O(\log ^2 n),O(\log n))\)-approximation for SL\(k\)ST: the algorithm finds a \(k\)-Steiner tree with cost at most \(O(\log ^2 n\cdot \text{ opt }^*)\) where \(\text{ opt }^*\) is the cost of an LP relaxation of the problem and diameter at most \(O(L\cdot \log n)\). This improves on the algorithm of Hajiaghayi et al. (2009) (APPROX’06/Algorithmica’09) which had ratio \((O(\log ^4 n), O(\log ^2 n))\). Using this, we obtain an \(O(\log ^3 n)\)-approximation for BB\(k\)ST, which improves upon the \(O(\log ^4 n)\)-approximation of Hajiaghayi et al. (2009). We also consider the problem of finding a minimum cost \(2\)-edge-connected subgraph with at least \(k\) vertices, which is introduced as the \((k,2)\)-subgraph problem in Lau et al. (2009) (STOC’07/SICOMP09). This generalizes some well-studied classical problems such as the \(k\)-MST and the minimum cost \(2\)-edge-connected subgraph problems. We give an \(O(\log n)\)-approximation algorithm for this problem which improves upon the \(O(\log ^2 n)\)-approximation algorithm of Lau et al. (2009).  相似文献   

9.
We initiate the study of relaxed \(L(2,1)\)-labelings of graphs. Suppose \(G\) is a graph. Let \(u\) be a vertex of \(G\). A vertex \(v\) is called an \(i\)-neighbor of \(u\) if \(d_G(u,v)=i\). A \(1\)-neighbor of \(u\) is simply called a neighbor of \(u\). Let \(s\) and \(t\) be two nonnegative integers. Suppose \(f\) is an assignment of nonnegative integers to the vertices of \(G\). If the following three conditions are satisfied, then \(f\) is called an \((s,t)\)-relaxed \(L(2,1)\)-labeling of \(G\): (1) for any two adjacent vertices \(u\) and \(v\) of \(G, f(u)\not =f(v)\); (2) for any vertex \(u\) of \(G\), there are at most \(s\) neighbors of \(u\) receiving labels from \(\{f(u)-1,f(u)+1\}\); (3) for any vertex \(u\) of \(G\), the number of \(2\)-neighbors of \(u\) assigned the label \(f(u)\) is at most \(t\). The minimum span of \((s,t)\)-relaxed \(L(2,1)\)-labelings of \(G\) is called the \((s,t)\)-relaxed \(L(2,1)\)-labeling number of \(G\), denoted by \(\lambda ^{s,t}_{2,1}(G)\). It is clear that \(\lambda ^{0,0}_{2,1}(G)\) is the so called \(L(2,1)\)-labeling number of \(G\). \(\lambda ^{1,0}_{2,1}(G)\) is simply written as \(\widetilde{\lambda }(G)\). This paper discusses basic properties of \((s,t)\)-relaxed \(L(2,1)\)-labeling numbers of graphs. For any two nonnegative integers \(s\) and \(t\), the exact values of \((s,t)\)-relaxed \(L(2,1)\)-labeling numbers of paths, cycles and complete graphs are determined. Tight upper and lower bounds for \((s,t)\)-relaxed \(L(2,1)\)-labeling numbers of complete multipartite graphs and trees are given. The upper bounds for \((s,1)\)-relaxed \(L(2,1)\)-labeling number of general graphs are also investigated. We introduce a new graph parameter called the breaking path covering number of a graph. A breaking path \(P\) is a vertex sequence \(v_1,v_2,\ldots ,v_k\) in which each \(v_i\) is adjacent to at least one vertex of \(v_{i-1}\) and \(v_{i+1}\) for \(i=2,3,\ldots ,k-1\). A breaking path covering of \(G\) is a set of disjoint such vertex sequences that cover all vertices of \(G\). The breaking path covering number of \(G\), denoted by \(bpc(G)\), is the minimum number of breaking paths in a breaking path covering of \(G\). In this paper, it is proved that \(\widetilde{\lambda }(G)= n+bpc(G^{c})-2\) if \(bpc(G^{c})\ge 2\) and \(\widetilde{\lambda }(G)\le n-1\) if and only if \(bpc(G^{c})=1\). The breaking path covering number of a graph is proved to be computable in polynomial time. Thus, if a graph \(G\) is of diameter two, then \(\widetilde{\lambda }(G)\) can be determined in polynomial time. Several conjectures and problems on relaxed \(L(2,1)\)-labelings are also proposed.  相似文献   

10.
Given a graph \(G=(V,E)\) and a non-negative integer \(c_u\) for each \(u\in V\), partial degree bounded edge packing problem is to find a subgraph \(G^{\prime }=(V,E^{\prime })\) with maximum \(|E^{\prime }|\) such that for each edge \((u,v)\in E^{\prime }\), either \(deg_{G^{\prime }}(u)\le c_u\) or \(deg_{G^{\prime }}(v)\le c_v\). The problem has been shown to be NP-hard even for uniform degree constraint (i.e., all \(c_u\) being equal). In this work we study the general degree constraint case (arbitrary degree constraint for each vertex) and present two combinatorial approximation algorithms with approximation factors \(4\) and \(2\). Then we give a \(\log _2 n\) approximation algorithm for edge-weighted version of the problem and an efficient exact algorithm for edge-weighted trees with time complexity \(O(n\log n)\). We also consider a generalization of this problem to \(k\)-uniform hypergraphs and present a constant factor approximation algorithm based on linear programming using Lagrangian relaxation.  相似文献   

11.
For \(S\subseteq G\), let \(\kappa (S)\) denote the maximum number r of edge-disjoint trees \(T_1, T_2, \ldots , T_r\) in G such that \(V(T_i)\cap V(T_j)=S\) for any \(i,j\in \{1,2,\ldots ,r\}\) and \(i\ne j\). For every \(2\le k\le n\), the k-connectivity of G, denoted by \(\kappa _k(G)\), is defined as \(\kappa _k(G)=\hbox {min}\{\kappa (S)| S\subseteq V(G)\ and\ |S|=k\}\). Clearly, \(\kappa _2(G)\) corresponds to the traditional connectivity of G. In this paper, we focus on the structure of minimally 2-connected graphs with \(\kappa _{3}=2\). Denote by \(\mathcal {H}\) the set of minimally 2-connected graphs with \(\kappa _{3}=2\). Let \(\mathcal {B}\subseteq \mathcal {H}\) and every graph in \(\mathcal {B}\) is either \(K_{2,3}\) or the graph obtained by subdividing each edge of a triangle-free 3-connected graph. We obtain that \(H\in \mathcal {H}\) if and only if \(H\in \mathcal {B}\) or H can be constructed from one or some graphs \(H_{1},\ldots ,H_{k}\) in \(\mathcal {B}\) (\(k\ge 1\)) by applying some operations recursively.  相似文献   

12.
In the Minimum Weight Partial Connected Set Cover problem, we are given a finite ground set \(U\), an integer \(q\le |U|\), a collection \(\mathcal {E}\) of subsets of \(U\), and a connected graph \(G_{\mathcal {E}}\) on vertex set \(\mathcal {E}\), the goal is to find a minimum weight subcollection of \(\mathcal {E}\) which covers at least \(q\) elements of \(U\) and induces a connected subgraph in \(G_{\mathcal {E}}\). In this paper, we derive a “partial cover property” for the greedy solution of the Minimum Weight Set Cover problem, based on which we present (a) for the weighted version under the assumption that any pair of sets in \(\mathcal {E}\) with nonempty intersection are adjacent in \(G_{\mathcal {E}}\) (the Minimum Weight Partial Connected Vertex Cover problem falls into this range), an approximation algorithm with performance ratio \(\rho (1+H(\gamma ))+o(1)\), and (b) for the cardinality version under the assumption that any pair of sets in \(\mathcal {E}\) with nonempty intersection are at most \(d\)-hops away from each other (the Minimum Partial Connected \(k\)-Hop Dominating Set problem falls into this range), an approximation algorithm with performance ratio \(2(1+dH(\gamma ))+o(1)\), where \(\gamma =\max \{|X|:X\in \mathcal {E}\}\), \(H(\cdot )\) is the Harmonic number, and \(\rho \) is the performance ratio for the Minimum Quota Node-Weighted Steiner Tree problem.  相似文献   

13.
The model \(k\)-CSP is a random CSP model with moderately growing arity \(k\) of constraints. By incorporating certain linear structure, \(k\)-CSP is revised to a random linear CSP, named \(k\)-hyper-\({\mathbb F}\)-linear CSP. It had been shown theoretically that the two models exhibit exact satisfiability phase transitions when the constraint density \(r\) is varied accordingly. In this paper, we use finite-size scaling analysis to characterize the threshold behaviors of the two models with finite problem size \(n\). A series of experimental studies are carried out to illustrate the scaling window of the model \(k\)-CSP.  相似文献   

14.
A \(k\)-connected (resp. \(k\)-edge connected) dominating set \(D\) of a connected graph \(G\) is a subset of \(V(G)\) such that \(G[D]\) is \(k\)-connected (resp. \(k\)-edge connected) and each \(v\in V(G)\backslash D\) has at least one neighbor in \(D\). The \(k\) -connected domination number (resp. \(k\) -edge connected domination number) of a graph \(G\) is the minimum size of a \(k\)-connected (resp. \(k\)-edge connected) dominating set of \(G\), and denoted by \(\gamma _k(G)\) (resp. \(\gamma '_k(G)\)). In this paper, we investigate the relation of independence number and 2-connected (resp. 2-edge-connected) domination number, and prove that for a graph \(G\), if it is \(2\)-edge connected, then \(\gamma '_2(G)\le 4\alpha (G)-1\), and it is \(2\)-connected, then \(\gamma _2(G)\le 6\alpha (G)-3\), where \(\alpha (G)\) is the independent number of \(G\).  相似文献   

15.
For a graph G, \(\alpha '(G)\) is the matching number of G. Let \(k\ge 2\) be an integer, \(K_{n}\) be the complete graph of order n. Assume that \(G_{1}, G_{2}, \ldots , G_{k}\) is a k-decomposition of \(K_{n}\). In this paper, we show that (1)
$$\begin{aligned} \left\lfloor \frac{n}{2}\right\rfloor \le \sum _{i=1}^{k} \alpha '(G_{i})\le k\left\lfloor \frac{n}{2}\right\rfloor . \end{aligned}$$
(2) If each \(G_{i}\) is non-empty for \(i = 1, \ldots , k\), then for \(n\ge 6k\),
$$\begin{aligned} \sum _{i=1}^{k} \alpha '(G_{i})\ge \left\lfloor \frac{n+k-1}{2}\right\rfloor . \end{aligned}$$
(3) If \(G_{i}\) has no isolated vertices for \(i = 1, \ldots , k\), then for \(n\ge 8k\),
$$\begin{aligned} \sum _{i=1}^{k} \alpha '(G_{i})\ge \left\lfloor \frac{n}{2}\right\rfloor +k. \end{aligned}$$
The bounds in (1), (2) and (3) are sharp. (4) When \(k= 2\), we characterize all the extremal graphs which attain the lower bounds in (1), (2) and (3), respectively.
  相似文献   

16.
Given a set of \(n\) sensors, the strong minimum energy topology (SMET) problem in a wireless sensor network is to assign transmit powers to all sensors such that (i) the graph induced only using the bi-directional links is connected, that is, there is a path between every pair of sensors, and (ii) the sum of the transmit powers of all the sensors is minimum. This problem is known to be NP-hard. In this paper, we study a special case of the SMET problem, namely , the \(k\)-strong minimum energy hierarchical topology (\(k\)-SMEHT) problem. Given a set of \(n\) sensors and an integer \(k\), the \(k\)-SMEHT problem is to assign transmission powers to all sensors such that (i) the graph induced using only bi-directional links is connected, (ii) at most \(k\) nodes of the graph induced using only bi-directional links have two or more neighbors, that is they are non-pendant nodes, and (iii) the sum of the transmit powers of all the sensors in \(G\) is minimum. We show that \(k\)-SMEHT problem is NP-hard for arbitrary \(k\). However, we propose a \(\frac{k+1}{2}\)-approximation algorithm for \(k\)-SMEHT problem, when \(k\) is a fixed constant. Finally, we propose a polynomial time algorithm for the \(k\)-SMEHT problem for \(k=2\).  相似文献   

17.
A paired-dominating set of a graph G is a dominating set of vertices whose induced subgraph has a perfect matching, while the paired-domination number is the minimum cardinality of a paired-dominating set in the graph, denoted by \(\gamma _{pr}(G)\). Let G be a connected \(\{K_{1,3}, K_{4}-e\}\)-free cubic graph of order n. We show that \(\gamma _{pr}(G)\le \frac{10n+6}{27}\) if G is \(C_{4}\)-free and that \(\gamma _{pr}(G)\le \frac{n}{3}+\frac{n+6}{9(\lceil \frac{3}{4}(g_o+1)\rceil +1)}\) if G is \(\{C_{4}, C_{6}, C_{10}, \ldots , C_{2g_o}\}\)-free for an odd integer \(g_o\ge 3\); the extremal graphs are characterized; we also show that if G is a 2 -connected, \(\gamma _{pr}(G) = \frac{n}{3} \). Furthermore, if G is a connected \((2k+1)\)-regular \(\{K_{1,3}, K_4-e\}\)-free graph of order n, then \(\gamma _{pr}(G)\le \frac{n}{k+1} \), with equality if and only if \(G=L(F)\), where \(F\cong K_{1, 2k+2}\), or k is even and \(F\cong K_{k+1,k+2}\).  相似文献   

18.
For positive numbers \(j\) and \(k\), an \(L(j,k)\)-labeling \(f\) of \(G\) is an assignment of numbers to vertices of \(G\) such that \(|f(u)-f(v)|\ge j\) if \(d(u,v)=1\), and \(|f(u)-f(v)|\ge k\) if \(d(u,v)=2\). The span of \(f\) is the difference between the maximum and the minimum numbers assigned by \(f\). The \(L(j,k)\)-labeling number of \(G\), denoted by \(\lambda _{j,k}(G)\), is the minimum span over all \(L(j,k)\)-labelings of \(G\). In this article, we completely determine the \(L(j,k)\)-labeling number (\(2j\le k\)) of the Cartesian product of path and cycle.  相似文献   

19.
In this paper, we study some extremal problems of three kinds of spectral radii of \(k\)-uniform hypergraphs (the adjacency spectral radius, the signless Laplacian spectral radius and the incidence \(Q\)-spectral radius). We call a connected and acyclic \(k\)-uniform hypergraph a supertree. We introduce the operation of “moving edges” for hypergraphs, together with the two special cases of this operation: the edge-releasing operation and the total grafting operation. By studying the perturbation of these kinds of spectral radii of hypergraphs under these operations, we prove that for all these three kinds of spectral radii, the hyperstar \(\mathcal {S}_{n,k}\) attains uniquely the maximum spectral radius among all \(k\)-uniform supertrees on \(n\) vertices. We also determine the unique \(k\)-uniform supertree on \(n\) vertices with the second largest spectral radius (for these three kinds of spectral radii). We also prove that for all these three kinds of spectral radii, the loose path \(\mathcal {P}_{n,k}\) attains uniquely the minimum spectral radius among all \(k\)-th power hypertrees of \(n\) vertices. Some bounds on the incidence \(Q\)-spectral radius are given. The relation between the incidence \(Q\)-spectral radius and the spectral radius of the matrix product of the incidence matrix and its transpose is discussed.  相似文献   

20.
A partition of the vertex set V(G) of a graph G into \(V(G)=V_1\cup V_2\cup \cdots \cup V_k\) is called a k-strong subcoloring if \(d(x,y)\ne 2\) in G for every \(x,y\in V_i\), \(1\le i \le k\) where d(xy) denotes the length of a shortest x-y path in G. The strong subchromatic number is defined as \(\chi _{sc}(G)=\text {min}\{ k:G \text { admits a }k\)-\(\text {strong subcoloring}\}\). In this paper, we explore the complexity status of the StrongSubcoloring problem: for a given graph G and a positive integer k, StrongSubcoloring is to decide whether G admits a k-strong subcoloring. We prove that StrongSubcoloring is NP-complete for subcubic bipartite graphs and the problem is polynomial time solvable for trees. In addition, we prove the following dichotomy results: (i) for the class of \(K_{1,r}\)-free split graphs, StrongSubcoloring is in P when \(r\le 3\) and NP-complete when \(r>3\) and (ii) for the class of H-free graphs, StrongSubcoloring is polynomial time solvable only if H is an induced subgraph of \(P_4\); otherwise the problem is NP-complete. Next, we consider a lower bound on the strong subchromatic number. A strong set is a set S of vertices of a graph G such that for every \(x,y\in S\), \(d(x,y)= 2\) in G and the cardinality of a maximum strong set in G is denoted by \(\alpha _{s}(G)\). Clearly, \(\alpha _{s}(G)\le \chi _{sc}(G)\). We consider the complexity status of the StrongSet problem: given a graph G and a positive integer k, StrongSet asks whether G contains a strong set of cardinality k. We prove that StrongSet is NP-complete for (i) bipartite graphs and (ii) \(K_{1,4}\)-free split graphs, and it is polynomial time solvable for (i) trees and (ii) \(P_4\)-free graphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号