首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider the coloring problem for hereditary graph classes, i.e. classes of simple unlabeled graphs closed under deletion of vertices. For the family of the hereditary classes of graphs defined by forbidden induced subgraphs with at most four vertices, there are three classes with an open complexity of the problem. For the problem and the open three cases, we present approximation polynomial-time algorithms with performance guarantees.  相似文献   

2.
The notion of a boundary graph class was recently introduced for a classification of hereditary graph classes according to the complexity of a considered problem. Two concrete graph classes are known to be boundary for several graph problems. We formulate a criterion to determine whether these classes are boundary for a given graph problem or not. We also demonstrate that the classes are simultaneously boundary for some continuous set of graph problems and they are not simultaneously boundary for another set of the same cardinality. Both families of problems are constituted by variants of the maximum induced subgraph problem.  相似文献   

3.

The minimum dominating set of graph has been widely used in many fields, but its solution is NP-hard. The complexity and approximation accuracy of existing algorithms need to be improved. In this paper, we introduce rough set theory to solve the dominating set of undirected graph. First, the adjacency matrix of undirected graph is used to establish an induced decision table, and the minimum dominating set of undirected graph is equivalent to the minimum attribute reduction of its induced decision table. Second, based on rough set theory, the significance of attributes (i.e., vertices) based on the approximate quality is defined in induced decision table, and a heuristic approximation algorithm of minimum dominating set is designed by using the significance of attributes (i.e., vertices) as heuristic information. This algorithm uses forward and backward search mechanism, which not only ensures to find a minimal dominating set, but also improves the approximation accuracy of minimum dominating set. In addition, a cumulative strategy is used to calculate the positive region of induced decision table, which effectively reduces the computational complexity. Finally, the experimental results on public datasets show that our algorithm has obvious advantages in running time and approximation accuracy of the minimum dominating set.

  相似文献   

4.
The maximum independent set problem is one of the most important problems in theoretical analysis on time and space complexities of exact algorithms. Theoretical improvement on upper bounds on time complexity to solve this problem in low-degree graphs can lead to an improvement on that to the problem in general graphs. In this paper, we derive an upper bound \(O^*(1.1376^n)\) on the time complexity of a polynomial-space algorithm that solves the maximum independent set problem in an n-vertex graph with degree bounded by 4, improving all previous upper bounds on the time complexity of exact algorithms to this problem. Our algorithm is a branch-and-reduce algorithm and analyzed by using the measure-and-conquer method. To make an amortized analysis of the running time bound, we use an idea of “shift” to save some decrease of the measure from good branches to bad branches. Our algorithm first deals with small vertex cuts and vertices of degree \({\ge }5\), which may be created in our algorithm even if the input graph has maximum degree 4, then eliminates cycles of length 3 and 4 containing degree-4 vertices, and finally branches on degree-4 vertices. We invoke an exact algorithm for this problem in graphs with maximum degree 3 directly when the graph has no vertices of degree \({\ge }4\). Branching on degree-4 vertices on special local structures will be the bottleneck case, and we carefully design rules of choosing degree-4 vertices to branch on so that the resulting instances after branching decrease the measure effectively in the next step.  相似文献   

5.
Let G be a graph with vertex set V and no isolated vertices, and let S be a dominating set of V. The set S is a semitotal dominating set of G if every vertex in S is within distance 2 of another vertex of S. And, S is a semipaired dominating set of G if S can be partitioned into 2-element subsets such that the vertices in each 2-set are at most distance two apart. The semitotal domination number \(\gamma _\mathrm{t2}(G)\) is the minimum cardinality of a semitotal dominating set of G, and the semipaired domination number \(\gamma _\mathrm{pr2}(G)\) is the minimum cardinality of a semipaired dominating set of G. For a graph without isolated vertices, the domination number \(\gamma (G)\), the total domination \(\gamma _t(G)\), and the paired domination number \(\gamma _\mathrm{pr}(G)\) are related to the semitotal and semipaired domination numbers by the following inequalities: \(\gamma (G) \le \gamma _\mathrm{t2}(G) \le \gamma _t(G) \le \gamma _\mathrm{pr}(G)\) and \(\gamma (G) \le \gamma _\mathrm{t2}(G) \le \gamma _\mathrm{pr2}(G) \le \gamma _\mathrm{pr}(G) \le 2\gamma (G)\). Given two graph parameters \(\mu \) and \(\psi \) related by a simple inequality \(\mu (G) \le \psi (G)\) for every graph G having no isolated vertices, a graph is \((\mu ,\psi )\)-perfect if every induced subgraph H with no isolated vertices satisfies \(\mu (H) = \psi (H)\). Alvarado et al. (Discrete Math 338:1424–1431, 2015) consider classes of \((\mu ,\psi )\)-perfect graphs, where \(\mu \) and \(\psi \) are domination parameters including \(\gamma \), \(\gamma _t\) and \(\gamma _\mathrm{pr}\). We study classes of perfect graphs for the possible combinations of parameters in the inequalities when \(\gamma _\mathrm{t2}\) and \(\gamma _\mathrm{pr2}\) are included in the mix. Our results are characterizations of several such classes in terms of their minimal forbidden induced subgraphs.  相似文献   

6.
We explore a reconfiguration version of the dominating set problem, where a dominating set in a graph G is a set S of vertices such that each vertex is either in S or has a neighbour in S. In a reconfiguration problem, the goal is to determine whether there exists a sequence of feasible solutions connecting given feasible solutions s and t such that each pair of consecutive solutions is adjacent according to a specified adjacency relation. Two dominating sets are adjacent if one can be formed from the other by the addition or deletion of a single vertex. For various values of k, we consider properties of \(D_k(G)\), the graph consisting of a node for each dominating set of size at most k and edges specified by the adjacency relation. Addressing an open question posed by Haas and Seyffarth, we demonstrate that \(D_{\varGamma (G)+1}(G)\) is not necessarily connected, for \(\varGamma (G)\) the maximum cardinality of a minimal dominating set in G. The result holds even when graphs are constrained to be planar, of bounded tree-width, or b-partite for \(b \ge 3\). Moreover, we construct an infinite family of graphs such that \(D_{\gamma (G)+1}(G)\) has exponential diameter, for \(\gamma (G)\) the minimum size of a dominating set. On the positive side, we show that \(D_{n-\mu }(G)\) is connected and of linear diameter for any graph G on n vertices with a matching of size at least \(\mu +1\).  相似文献   

7.
The problem of monitoring an electric power system by placing as few measurement devices in the system as possible is closely related to the well-known domination problem in graphs. Following a set of rules for power system monitoring, a set S of vertices is defined to be a power dominating set of a graph if every vertex and every edge in the system is monitored by the set S. The minimum cardinality of a power dominating set of G is the power domination number γ p (G). In this paper, we investigate the power domination number for the generalized Petersen graphs, presenting both upper bounds for such graphs and exact results for a subfamily of generalized Petersen graphs.  相似文献   

8.
A dominating set of a graph is a set of vertices such that every vertex not in the set is adjacent to a vertex in the set, while a paired-dominating set of a graph is a set of vertices such that every vertex is adjacent to a vertex in the set and the subgraph induced by the set contains a perfect matching. In this paper, we provide a constructive characterization of graphs whose vertex set can be partitioned into a dominating set and a paired-dominating set.  相似文献   

9.
In the domination game, two players, the Dominator and Staller, take turns adding vertices of a fixed graph to a set, at each turn increasing the number of vertices dominated by the set, until the final set \(A_*\) dominates the whole graph. The Dominator plays to minimise the size of the set \(A_*\) while the Staller plays to maximise it. A graph is \(D\)-trivial if when the Dominator plays first and both players play optimally, the set \(A_*\) is a minimum dominating set of the graph. A graph is \(S\)-trivial if the same is true when the Staller plays first. We consider the problem of characterising \(D\)-trivial and \(S\)-trivial graphs. We give complete characterisations of \(D\)-trivial forests and of \(S\)-trivial forests. We also show that \(2\)-connected \(D\)-trivial graphs cannot have large girth, and conjecture that the same holds without the connectivity condition.  相似文献   

10.
We consider an augmentation problem on undirected and directed graphs, where given a directed (an undirected) graph G and p pairs of vertices \(P=\left\{ {\left( {s_1 ,t_1 } \right) ,\ldots ,\left( {s_p ,t_p } \right) } \right\} \), one has to find the minimum weight set of arcs (edges) to be added to the graph so that the resulting graph has (can be oriented to have) directed paths between the specified pairs of vertices. In the undirected case, we present an FPT-algorithm with respect to the number of new edges. Also, we have implemented and evaluated the algorithm on some real-world networks to show its efficiency in decreasing the size of input graphs and converting them to much smaller kernels. In the directed case, we consider the complexity of the problem with respect to the various parameters and present some parameterized algorithms and parameterized complexity results for it.  相似文献   

11.
We consider graph properties that can be checked from labels, i.e., bit sequences, of logarithmic length attached to vertices. We prove that there exists such a labeling for checking a first-order formula with free set variables in the graphs of every class that is nicely locally clique-width-decomposable. This notion generalizes that of a nicely locally tree-decomposable class. The graphs of such classes can be covered by graphs of bounded clique-width with limited overlaps. We also consider such labelings for bounded first-order formulas on graph classes of bounded expansion. Some of these results are extended to counting queries.  相似文献   

12.
In this paper, we study the parameterized complexity of Dominating Set problem in chordal graphs and near chordal graphs. We show the problem is W[2]-hard and cannot be solved in time n o(k) in chordal and s-chordal (s>3) graphs unless W[1]=FPT. In addition, we obtain inapproximability results for computing a minimum dominating set in chordal and near chordal graphs. Our results prove that unless NP=P, the minimum dominating set in a chordal or s-chordal (s>3) graph cannot be approximated within a ratio of \fracc3lnn\frac{c}{3}\ln{n} in polynomial time, where n is the number of vertices in the graph and 0<c<1 is the constant from the inapproximability of the minimum dominating set in general graphs. In other words, our results suggest that restricting to chordal or s-chordal graphs can improve the approximation ratio by no more than a factor of 3. We then extend our techniques to find similar results for the Independent Dominating Set problem and the Connected Dominating Set problem in chordal or near chordal graphs.  相似文献   

13.
A Greedy Randomized Adaptive Search Procedure (GRASP) is a randomized heuristic that has produced high quality solutions for a wide range of combinatorial optimization problems. The NP-complete Feedback Vertex Set (FVS) Problem is to find the minimum number of vertices that need to be removed from a directed graph so that the resulting graph has no directed cycle. The FVS problem has found applications in many fields, including VLSI design, program verification, and statistical inference. In this paper, we develop a GRASP for the FVS problem. We describe GRASP construction mechanisms and local search, as well as some efficient problem reduction techniques. We report computational experience on a set of test problems using three variants of GRASP.  相似文献   

14.
In a graph \(G=(V,E)\), a set \(D \subseteq V\) is said to be a dominating set of G if for every vertex \(u\in V{\setminus }D\), there exists a vertex \(v\in D\) such that \(uv\in E\). A secure dominating set of the graph G is a dominating set D of G such that for every \(u\in V{\setminus }D\), there exists a vertex \(v\in D\) such that \(uv\in E\) and \((D{\setminus }\{v\})\cup \{u\}\) is a dominating set of G. Given a graph G and a positive integer k, the secure domination problem is to decide whether G has a secure dominating set of cardinality at most k. The secure domination problem has been shown to be NP-complete for chordal graphs via split graphs and for bipartite graphs. In Liu et al. (in: Proceedings of 27th workshop on combinatorial mathematics and computation theory, 2010), it is asked to find a polynomial time algorithm for computing a minimum secure dominating set in a block graph. In this paper, we answer this by presenting a linear time algorithm to compute a minimum secure dominating set in block graphs. We then strengthen the known NP-completeness of the secure domination problem by showing that the secure domination problem is NP-complete for undirected path graphs and chordal bipartite graphs.  相似文献   

15.
Let G be a connected graph and k be a positive integer. A vertex subset D of G is a k-hop connected dominating set if the subgraph of G induced by D is connected, and for every vertex v in G there is a vertex u in D such that the distance between v and u in G is at most k. We study the problem of finding a minimum k-hop connected dominating set of a graph (\({\textsc {Min}}k{\hbox {-}\textsc {CDS}}\)). We prove that \({\textsc {Min}}k{\hbox {-}\textsc {CDS}}\) is \(\mathscr {NP}\)-hard on planar bipartite graphs of maximum degree 4. We also prove that \({\textsc {Min}}k{\hbox {-}\textsc {CDS}}\) is \(\mathscr {APX}\)-complete on bipartite graphs of maximum degree 4. We present inapproximability thresholds for \({\textsc {Min}}k{\hbox {-}\textsc {CDS}}\) on bipartite and on (1, 2)-split graphs. Interestingly, one of these thresholds is a parameter of the input graph which is not a function of its number of vertices. We also discuss the complexity of computing this graph parameter. On the positive side, we show an approximation algorithm for \({\textsc {Min}}k{\hbox {-}\textsc {CDS}}\). Finally, when \(k=1\), we present two new approximation algorithms for the weighted version of the problem restricted to graphs with a polynomially bounded number of minimal separators.  相似文献   

16.
Let \(G=(V,E)\) be a simple graph without isolated vertices. A set \(S\) of vertices is a total dominating set of a graph \(G\) if every vertex of \(G\) is adjacent to some vertex in \(S\). A paired dominating set of \(G\) is a dominating set whose induced subgraph has a perfect matching. The minimum cardinality of a total dominating set (respectively, a paired dominating set) is the total domination number (respectively, the paired domination number). Hu and Xu (J Combin Optim 27(2):369–378, 2014) computed the exact values of total and paired domination numbers of Cartesian product \(C_n\square C_m\) for \(m=3,4\). Graph bundles generalize the notions of covering graphs and Cartesian products. In this paper, we generalize these results given in Hu and Xu (J Combin Optim 27(2):369–378, 2014) to graph bundle and compute the total domination number and the paired domination number of \(C_m\) bundles over a cycle \(C_n\) for \(m=3,4\). Moreover, we give the exact value for the total domination number of Cartesian product \(C_n\square C_5\) and some upper bounds of \(C_m\) bundles over a cycle \(C_n\) where \(m\ge 5\).  相似文献   

17.
We study a new coloring concept which generalizes the classical vertex coloring problem in a graph by extending the notion of stable sets to split graphs. First of all, we propose the packing problem of finding the split graph of maximum size where a split graph is a graph G = (V,E) in which the vertex set V can be partitioned into a clique K and a stable set S. No condition is imposed on the edges linking vertices in S to the vertices in K. This maximum split graph problem gives rise to an associated partitioning problem that we call the split-coloring problem. Given a graph, the objective is to cover all his vertices by a least number of split graphs. Definitions related to this new problem are introduced. We mention some polynomially solvable cases and describe open questions on this area. An erratum to this article is available at .  相似文献   

18.
We consider the facility location problem of locating a set \(X_p\) of p facilities (resources) on a network (or a graph) such that the subnetwork (or subgraph) induced by the selected set \(X_p\) is connected. Two problems on a block graph G are proposed: one problem is to minimizes the sum of its weighted distances from all vertices of G to \(X_p\), another problem is to minimize the maximum distance from each vertex that is not in \(X_p\) to \(X_p\) and, at the same time, to minimize the sum of its distances from all vertices of G to \(X_p\). We prove that the first problem is linearly solvable on block graphs with unit edge length. For the second problem, it is shown that the set of Pareto-optimal solutions of the two criteria has cardinality not greater than n, and can be obtained in \(O(n^2)\) time, where n is the number of vertices of the block graph G.  相似文献   

19.
Journal of Combinatorial Optimization - A set S of vertices in a graph G is a dominating set if every vertex not in S is adjacent to a vertex in&nbsp;S. If, in addition, S is an independent...  相似文献   

20.
In the minimum weighted dominating set problem (MWDS), we are given a unit disk graph with non-negative weight on each vertex. The MWDS seeks a subset of the vertices of the graph with minimum total weight such that each vertex of the graph is either in the subset or adjacent to some nodes in the subset. A?weight function is called smooth, if the ratio of the weights of any two adjacent nodes is upper bounded by a constant. MWDS is known to be NP-hard. In this paper, we give the first polynomial time approximation scheme (PTAS) for MWDS with smooth weights on unit disk graphs, which achieves a (1+ε)-approximation for MWDS, for any ε>0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号