首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Consider the problem of computing the minimum-weight multicast route in an optical network with both nonsplitting and splitting nodes. This problem can be reduced to the minimum Hamiltonian path problem when all nodes are nonsplitting, and the Steiner minimum tree problem when all nodes are splitting. Therefore, the problem is NP-hard. Previously, the best known polynomial-time approximation has the performance ratio 3. In this paper, we present a new polynomial-time approximation with performance ratio of 1+ρ, where ρ is the best known approximation performance ratio for the Steiner minimum tree in graph and it has been known that ρ < 1.55. Support in part by National Science Foundation under grants CCF-0514796 and CNS-0524429  相似文献   

2.
Energy efficient multicast problem is one of important issues in ad hoc networks. In this paper, we address the energy efficient multicast problem for discrete power levels in ad hoc wireless networks. The problem of our concern is: given n nodes deployed over 2-D plane and each node v has l(v) transmission power levels and a multicast request (s,D) (clearly, when D is V∖{s}, the multicast request is a broadcast request), how to find a multicast tree rooted at s and spanning all destinations in D such that the total energy cost of the multicast tree is minimized. We first prove that this problem is NP-hard and it is unlikely to have an approximation algorithm with performance ratio ρlnn(ρ<1). Then, we propose a general algorithm for the multicast/broadcast tree problem. And based on the general algorithm, we propose an approximation algorithm and a heuristics for multicast tree problem. Especially, we also propose an efficient heuristic for broadcast tree problem. Simulations ensure our algorithms are efficient.  相似文献   

3.
Given an undirected edge-capacitated graph and given (possibly) different subsets of vertices, we consider the problem of selecting a maximum (weighted) set of Steiner trees, each tree spanning a subset of vertices, without violating the capacity constraints. This problem is motivated by applications in multicast communication networks. We give an integer linear programming (ILP) formulation for the problem, and observe that its linear programming (LP) relaxation is a fractional packing problem with exponentially many variables and a block (sub-)problem that cannot be solved in polynomial time. To this end, we take an r-approximate block solver (a weak block solver) to develop a (1−ε)/r-approximation algorithm for the LP relaxation. The algorithm has a polynomial coordination complexity for any ε∈(0,1). To the best of our knowledge, this is the first approximation result for fractional packing problems with only weak block solvers (with arbitrarily large approximation ratio) and a coordination complexity that is polynomial in the input size. This leads also to an approximation algorithm for the underlying tree packing problem. Finally, we extend our results to an important multicast routing and wavelength assignment problem in optical networks, where each Steiner tree is to be assigned one of a limited set of given wavelengths, so that trees crossing the same fiber are assigned different wavelengths. A preliminary version of this paper appeared in the Proceedings of the 1st Workshop on Internet and Network Economics (WINE 2005), LNCS, vol. 3828, pp. 688–697. Research supported by a MITACS grant for all the authors, an NSERC post doctoral fellowship for the first author, the NSERC Discovery Grant #5-48923 for the second and fourth author, NSERC Discovery Grant #15296 for the third author, the Canada Research Chair Program for the second author, and an NSERC industrial and development fellowship for the fourth author.  相似文献   

4.
Given a set N of n terminals in the first quadrant of the Euclidean plane E 2, find a minimum length directed tree rooted at the origin o, connecting to all terminals in N, and consisting of only horizontal and vertical arcs oriented from left to right or from bottom to top. This problem is called rectilinear Steiner arborescence problem, which has been proved to be NP-complete recently (Shi and Su, 11th ACM-SIAM Symposium on Discrete Algorithms (SODA), January 2000, to appear). In this paper, we present a polynomial time approximation scheme for this problem.  相似文献   

5.
An improved approximation algorithm is presented in this paper for the multicast k-tree routing problem. The algorithm has a worst case performance ratio of (2.4 + ρ), where ρ is the best approximation ratio for the metric Steiner tree problem (and is about 1.55 so far). The previous best approximation algorithm for the multicast k-tree routing problem has a performance ratio of 4. Two techniques, weight averaging and tree partitioning, are developed to facilitate the algorithm design and analysis.Research supported by AICML, CFI, NSERC, PENCE, a Startup Grant from the University of Alberta, and NNSF Grant 60373012.  相似文献   

6.
Graph partition problems have been investigated extensively in combinatorial optimization. In this work, we consider an important graph partition problem which has applications in the design of VLSI circuits, namely, the balanced Max-3-Uncut problem. We formulate the problem as a discrete linear program with complex variables and propose an approximation algorithm with an approximation ratio of 0.3456 using a semidefinite programming rounding technique along with a greedy swapping step afterwards to guarantee the balanced constraint. Our analysis utilizes a bivariate function, rather than the univariate function in previous work.  相似文献   

7.
We study min-sum bin packing (MSBP). This is a bin packing problem, where the cost of an item is the index of the bin into which it is packed. The problem is equivalent to a batch scheduling problem we define, where the total completion time is to be minimized. The problem is NP-hard in the strong sense. We show that it is not harder than this by designing a polynomial time approximation scheme for it. We also show that several natural algorithms which are based on well-known bin packing heuristics (such as First Fit Decreasing) fail to achieve an asymptotic finite approximation ratio, whereas Next Fit Increasing has an absolute approximation ratio of at most 2, and an asymptotic approximation ratio of at most 1.6188. We design a new heuristic that applies Next Fit Increasing on the relatively small items and adds the larger items using First Fit Decreasing, and show that its asymptotic approximation ratio is at most 1.5604.  相似文献   

8.
Given a graph G, the maximum internal spanning tree problem (MIST for short) asks for computing a spanning tree T of G such that the number of internal vertices in T is maximized. MIST has possible applications in the design of cost-efficient communication networks and water supply networks and hence has been extensively studied in the literature. MIST is NP-hard and hence a number of polynomial-time approximation algorithms have been designed for MIST in the literature. The previously best polynomial-time approximation algorithm for MIST achieves a ratio of \(\frac{3}{4}\). In this paper, we first design a simpler algorithm that achieves the same ratio and the same time complexity as the previous best. We then refine the algorithm into a new approximation algorithm that achieves a better ratio (namely, \(\frac{13}{17}\)) with the same time complexity. Our new algorithm explores much deeper structure of the problem than the previous best. The discovered structure may be used to design even better approximation or parameterized algorithms for the problem in the future.  相似文献   

9.
It is well-known that the multiple knapsack problem is NP-hard, and does not admit an FPTAS even for the case of two identical knapsacks. Whereas the 0-1 knapsack problem with only one knapsack has been intensively studied, and some effective exact or approximation algorithms exist. A natural approach for the multiple knapsack problem is to pack the knapsacks successively by using an effective algorithm for the 0-1 knapsack problem. This paper considers such an approximation algorithm that packs the knapsacks in the nondecreasing order of their capacities. We analyze this algorithm for 2 and 3 knapsack problems by the worst-case analysis method and give all their error bounds.  相似文献   

10.
In this article, we consider the non-resumable case of the single machine scheduling problem with a fixed non-availability interval. We aim to minimize the makespan when every job has a positive tail. We propose a polynomial approximation algorithm with a worst-case performance ratio of 3/2 for this problem. We show that this bound is tight. We present a dynamic programming algorithm and we show that the problem has an FPTAS (Fully Polynomial Time Approximation Algorithm) by exploiting the well-known approach of Ibarra and Kim (J. ACM 22:463–468, 1975). Such an FPTAS is strongly polynomial. The obtained results outperform the previous polynomial approximation algorithms for this problem.  相似文献   

11.
The Lp-min increment fit and Lp-min increment ultrametric fit problems are two popular optimization problems arising from distance methods for reconstructing phylogenetic trees. This paper proves1. An O(n2) algorithm for approximating L -min increment fit within ratio 3.2. A ratio-O n 1/p polynomial time approximation to Lp-min increment ultrametric fit.3. The neighbor-joining algorithm can correctly reconstruct a phylogenetic tree T when increment errors are small enough under L -norm.  相似文献   

12.
A parallel computational model is defined which addresses I/O contention,latency, and pipe-lined message passing between tasks allocated to differentprocessors. The model can be used for parallel task-allocation on either anetwork of workstations or on a multi-stage inter-connected parallel machine.To study performance bounds more closely, basic properties are developed forwhen the precedence constraints form a directed tree. It is shown that theproblem of optimally scheduling a directed one-level precedence tree on anunlimited number of identical processors in this model is NP-hard. Theproblem of scheduling a directed two-level precedence tree is also shown tobe NP-hard even when the system latency is zero. An approximation algorithm is then presented for scheduling directedone-level task trees on an unlimited number of processors with anapproximation ratio of 3. Simulation results show that this algorithm is, infact, much faster than its worst-case performance bound. Better simulationresults are obtained by improving our approximation algorithm usingheusistics. Restricting the problem to the case of equal task executiontimes, a linear-time algorithm is presented to find an optimal schedule.  相似文献   

13.
Ji  Sai  Xu  Dachuan  Li  Min  Wang  Yishui 《Journal of Combinatorial Optimization》2022,43(5):933-952

Correlation clustering problem is a clustering problem which has many applications such as protein interaction networks, cross-lingual link detection, communication networks, and social computing. In this paper, we introduce two variants of correlation clustering problem: correlation clustering problem on uncertain graphs and correlation clustering problem with non-uniform hard constrained cluster sizes. Both problems overcome part of the limitations of the existing variants of correlation clustering problem and have practical applications in the real world. We provide a constant approximation algorithm and two approximation algorithms for the former and the latter problem, respectively.

  相似文献   

14.
We consider the max-bisection problem and the disjoint 2-catalog segmentation problem, two well-known NP-hard combinatorial optimization problems. For the first problem, we apply the semidefinite programming (SDP) relaxation and the RPR2 technique of Feige and Langberg (J. Algorithms 60:1–23, 2006) to obtain a performance curve as a function of the ratio of the optimal SDP value over the total weight through finer analysis under the assumption of convexity of the RPR2 function. This ratio is shown to be in the range of [0.5,1]. The performance curve implies better approximation performance when this ratio is away from 0.92, corresponding to the lowest point on this curve with the currently best approximation ratio of 0.7031 due to Feige and Langberg (J. Algorithms 60:1–23, 2006). For the second problem, similar technique results in an approximation ratio of 0.7469, improving the previously best known result 0.7317 due to Wu et al. (J. Ind. Manag. Optim. 8:117–126, 2012).  相似文献   

15.
Given a graph \(G=(V,E)\) and a non-negative integer \(c_u\) for each \(u\in V\), partial degree bounded edge packing problem is to find a subgraph \(G^{\prime }=(V,E^{\prime })\) with maximum \(|E^{\prime }|\) such that for each edge \((u,v)\in E^{\prime }\), either \(deg_{G^{\prime }}(u)\le c_u\) or \(deg_{G^{\prime }}(v)\le c_v\). The problem has been shown to be NP-hard even for uniform degree constraint (i.e., all \(c_u\) being equal). In this work we study the general degree constraint case (arbitrary degree constraint for each vertex) and present two combinatorial approximation algorithms with approximation factors \(4\) and \(2\). Then we give a \(\log _2 n\) approximation algorithm for edge-weighted version of the problem and an efficient exact algorithm for edge-weighted trees with time complexity \(O(n\log n)\). We also consider a generalization of this problem to \(k\)-uniform hypergraphs and present a constant factor approximation algorithm based on linear programming using Lagrangian relaxation.  相似文献   

16.
For given a pair of nodes in a graph, the minimum non-separating path problem looks for a minimum weight path between the two nodes such that the remaining graph after removing the path is still connected. The balanced connected bipartition (BCP2) problem looks for a way to bipartition a graph into two connected subgraphs with their weights as equal as possible. In this paper we present an algorithm in time O(NlogN) for finding a minimum weight non-separating path between two given nodes in a grid graph of N nodes with positive weight. This result leads to a 5/4-approximation algorithm for the BCP2 problem on grid graphs, which is the currently best ratio achieved in polynomial time. We also developed an exact algorithm for the BCP2 problem on grid graphs. Based on the exact algorithm and a rounding technique, we show an approximation scheme, which is a fully polynomial time approximation scheme for fixed number of rows.  相似文献   

17.
We study the following generalization of the classical edge coloring problem: Given a weighted graph, find a partition of its edges into matchings (colors), each one of weight equal to the maximum weight of its edges, so that the total weight of the partition is minimized. We explore the frontier between polynomial and NP-hard variants of the problem, with respect to the class of the underlying graph, as well as the approximability of NP-hard variants. In particular, we present polynomial algorithms for bounded degree trees and star of chains, as well as an approximation algorithm for bipartite graphs of maximum degree at most twelve which beats the best known approximation ratios.  相似文献   

18.
The scheduling problem in production management has been studied for a considerable time, and several types of software are used. A problem arises in updating the production planning, or &lsquo;rescheduling&rsquo;, when an unexpected event occurs in the shop control. Solving this problem is difficult because the implications of such events are usually impossible to forecast. To prevent this problem, we propose to manipulate a set of equivalent schedules during the short time schedule. Then, if an unexpected event prevents realization of a given schedule, it will be possible to find an equivalent one, without full rescheduling. The primary requirement is to find a formal representation of a set of schedules. This has already been explored using CPM graphs with nodes associated to a set of tasks. We propose in this paper to use an extension of such graphs, PQR trees, that represent both precedence and group constraints. We first reiterate the notion of PQR trees. We present methods to take into account date constraints in such a structure, and we give a model for the general job-shop problem.  相似文献   

19.
A spanning subgraph of a graph G is called a spanning star forest of G if it is a collection of node-disjoint trees of depth at most 1. The size of a spanning star forest is the number of leaves in all its components. The goal of the spanning star forest problem is to find the maximum-size spanning star forest of a given graph. In this paper, we study the spanning star forest problem on c-dense graphs, where for any fixed c∈(0,1), a graph of n vertices is called c-dense if it contains at least cn 2/2 edges. We design a $(\alpha+(1-\alpha)\sqrt{c}-\epsilon)$ -approximation algorithm for spanning star forest in c-dense graphs for any ?>0, where $\alpha=\frac{193}{240}$ is the best known approximation ratio of the spanning star forest problem in general graphs. Thus, our approximation ratio outperforms the best known bound for this problem when dealing with c-dense graphs. We also prove that, for any constant c∈(0,1), approximating spanning star forest in c-dense graphs is APX-hard. We then demonstrate that for weighted versions (both node- and edge-weighted) of this problem, we cannot get any approximation algorithm with strictly better performance guarantee on c-dense graphs than on general graphs. Finally, we give strong inapproximability results for a closely related problem, namely the minimum dominating set problem, restricted on c-dense graphs.  相似文献   

20.
In 1984, Gabow and Tarjan provided a very elegant and fast algorithm for the following problem: given a matroid defined on a red and blue colored ground set, determine a basis of minimum cost among those with k red elements, or decide that no such basis exists. In this paper, we investigate extensions of this problem from ordinary matroids to the more general notion of poset matroids which take precedence constraints on the ground set into account. We show that the problem on general poset matroids becomes -hard, already if the underlying partially ordered set (poset) consists of binary trees of height two. On the positive side, we present two algorithms: a pseudopolynomial one for integer polymatroids, i.e., the case where the poset consists of disjoint chains, and a polynomial algorithm for the problem to determine a minimum cost ideal of size l with k red elements, i.e., the uniform rank-l poset matroid, on series-parallel posets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号