首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Given a directed simple graph \(G=(V,E)\) and a cost function \(c:E \rightarrow R_+\), the power of a vertex \(u\) in a directed spanning subgraph \(H\) is given by \(p_H(u) = \max _{uv \in E(H)} c(uv)\), and corresponds to the energy consumption required for wireless node \(u\) to transmit to all nodes \(v\) with \(uv \in E(H)\). The power of \(H\) is given by \(p(H) = \sum _{u \in V} p_H(u)\). Power Assignment seeks to minimize \(p(H)\) while \(H\) satisfies some connectivity constraint. In this paper, we assume \(E\) is bidirected (for every directed edge \(e \in E\), the opposite edge exists and has the same cost), while \(H\) is required to be strongly connected. Moreover, we assume \(c:E \rightarrow \{A,B\}\), where \(0 \le A < B\). We improve the best known approximation ratio from 1.75 (Chen et al. IEEE GLOBECOM 2005) to \(\pi ^2/6 - 1/36 + \epsilon \le 1.61\) using an adaptation of the algorithm developed by Khuller et al. [SIAM J Comput 24(4):859–872 1995, Discr Appl Math 69(3):281–289 1996] for (unweighted) Minimum Strongly Connected Subgraph.  相似文献   

2.
Let \(G=(V,\, E)\) be a given directed graph in which every edge e is associated with two nonnegative costs: a weight w(e) and a length l(e). For a pair of specified distinct vertices \(s,\, t\in V\), the k-(edge) disjoint constrained shortest path (kCSP) problem is to compute k (edge) disjoint paths between s and t, such that the total length of the paths is minimized and the weight is bounded by a given weight budget \(W\in \mathbb {R}_{0}^{+}\). The problem is known to be \({\mathcal {NP}}\)-hard, even when \(k=1\) (Garey and Johnson in Computers and intractability, 1979). Approximation algorithms with bifactor ratio \(\left( 1\,+\,\frac{1}{r},\, r\left( 1\,+\,\frac{2(\log r\,+\,1)}{r}\right) (1\,+\,\epsilon )\right) \) and \((1\,+\,\frac{1}{r},\,1\,+\,r)\) have been developed for \(k=2\) in Orda and Sprintson (IEEE INFOCOM, pp. 727–738, 2004) and Chao and Hong (IEICE Trans Inf Syst 90(2):465–472, 2007), respectively. For general k, an approximation algorithm with ratio \((1,\, O(\ln n))\) has been developed for a weaker version of kCSP, the k bi-constraint path problem which is to compute k disjoint st-paths satisfying a given length constraint and a weight constraint simultaneously (Guo et al. in COCOON, pp. 325–336, 2013). This paper first gives an approximation algorithm with bifactor ratio \((2,\,2)\) for kCSP using the LP-rounding technique. The algorithm is then improved by adopting a more sophisticated method to round edges. It is shown that for any solution output by the improved algorithm, there exists a real number \(0\le \alpha \le 2\) such that the weight and the length of the solution are bounded by \(\alpha \) times and \(2-\alpha \) times of that of an optimum solution, respectively. The key observation of the ratio proof is to show that the fractional edges, in a basic solution against the proposed linear relaxation of kCSP, exactly compose a graph in which the degree of every vertex is exactly two. At last, by a novel enhancement of the technique in Guo et al. (COCOON, pp. 325–336, 2013), the approximation ratio is further improved to \((1,\,\ln n)\).  相似文献   

3.
An oriented graph \(G^\sigma \) is a digraph without loops or multiple arcs whose underlying graph is G. Let \(S\left( G^\sigma \right) \) be the skew-adjacency matrix of \(G^\sigma \) and \(\alpha (G)\) be the independence number of G. The rank of \(S(G^\sigma )\) is called the skew-rank of \(G^\sigma \), denoted by \(sr(G^\sigma )\). Wong et al. (Eur J Comb 54:76–86, 2016) studied the relationship between the skew-rank of an oriented graph and the rank of its underlying graph. In this paper, the correlation involving the skew-rank, the independence number, and some other parameters are considered. First we show that \(sr(G^\sigma )+2\alpha (G)\geqslant 2|V_G|-2d(G)\), where \(|V_G|\) is the order of G and d(G) is the dimension of cycle space of G. We also obtain sharp lower bounds for \(sr(G^\sigma )+\alpha (G),\, sr(G^\sigma )-\alpha (G)\), \(sr(G^\sigma )/\alpha (G)\) and characterize all corresponding extremal graphs.  相似文献   

4.
Let \(LTQ_n\) be the n-dimensional locally twisted cube. Hsieh and Tu (Theor Comput Sci 410(8–10):926–932, 2009) proposed an algorithm to construct n edge-disjoint spanning trees rooted at a particular vertex 0 in \(LTQ_n\). Later on, Lin et al. (Inf Process Lett 110(10):414–419, 2010) proved that Hsieh and Tu’s spanning trees are indeed independent spanning trees (ISTs for short), i.e., all spanning trees are rooted at the same vertex r and for any other vertex \(v(\ne r)\), the paths from v to r in any two trees are internally vertex-disjoint. Shortly afterwards, Liu et al. (Theor Comput Sci 412(22):2237–2252, 2011) pointed out that \(LTQ_n\) fails to be vertex-transitive for \(n\geqslant 4\) and proposed an algorithm for constructing n ISTs rooted at an arbitrary vertex in \(LTQ_n\). Although this algorithm can simultaneously construct n ISTs, it is hard to be parallelized for the construction of each spanning tree. In this paper, from a modification of Hsieh and Tu’s algorithm, we present a fully parallelized scheme to construct n ISTs rooted at an arbitrary vertex in \(LTQ_n\) in \({\mathcal O}(n)\) time using \(2^n\) vertices of \(LTQ_n\) as processors.  相似文献   

5.
A hamiltonian walk of a digraph is a closed spanning directed walk with minimum length in the digraph. The length of a hamiltonian walk in a digraph D is called the hamiltonian number of D, denoted by h(D). In Chang and Tong (J Comb Optim 25:694–701, 2013), Chang and Tong proved that for a strongly connected digraph D of order n, \(n\le h(D)\le \lfloor \frac{(n+1)^2}{4} \rfloor \), and characterized the strongly connected digraphs of order n with hamiltonian number \(\lfloor \frac{(n+1)^2}{4} \rfloor \). In the paper, we characterized the strongly connected digraphs of order n with hamiltonian number \(\lfloor \frac{(n+1)^2}{4} \rfloor -1\) and show that for any triple of integers n, k and t with \(n\ge 5\), \(n\ge k\ge 3\) and \(t\ge 0\), there is a class of nonisomorphic digraphs with order n and hamiltonian number \(n(n-k+1)-t\).  相似文献   

6.
An L(2, 1)-labeling for a graph \(G=(V,E)\) is a function f on V such that \(|f(u)-f(v)|\ge 2\) if u and v are adjacent and f(u) and f(v) are distinct if u and v are vertices of distance two. The L(2, 1)-labeling number, or the lambda number \(\lambda (G)\), for G is the minimum span over all L(2, 1)-labelings of G. When \(P_{m}\times C_{n}\) is the direct product of a path \(P_m\) and a cycle \(C_n\), Jha et al. (Discret Appl Math 145:317–325, 2005) computed the lambda number of \(P_{m}\times C_{n}\) for \(n\ge 3\) and \(m=4,5\). They also showed that when \(m\ge 6\) and \(n\ge 7\), \(\lambda (P_{m}\times C_{n})=6\) if and only if n is the multiple of 7 and conjectured that it is 7 if otherwise. They also showed that \(\lambda (C_{7i}\times C_{7j})=6\) for some ij. In this paper, we show that when \(m\ge 6\) and \(n\ge 3\), \(\lambda (P_m\times C_n)=7\) if and only if n is not a multiple of 7. Consequently the conjecture is proved. Here we also provide the conditions on m and n such that \(\lambda (C_m\times C_n)\le 7\).  相似文献   

7.
Generalizing the concept of tree metric, Hirai (Ann Combinatorics 10:111–128, 2006) introduced the concept of subtree distance. A nonnegative-valued mapping \(d:X\times X \rightarrow \mathbb {R}_+\) is called a subtree distance if there exist a weighted tree T and a family \(\{T_x\mid x \in X\}\) of subtrees of T indexed by the elements in X such that \(d(x,y)=d_T(T_x,T_y)\), where \(d_T(T_x,T_y)\ge 0\) is the distance between \(T_x\) and \(T_y\) in T. Hirai (2006) provided a characterization of subtree distances that corresponds to Buneman’s (J Comb Theory, Series B 17:48–50, 1974) four-point condition for tree metrics. Using this characterization, we can decide whether or not a given mapping is a subtree distance in O\((n^4)\) time. In this paper, we show an O\((n^3)\) time algorithm that finds a representation of a given subtree distance. This results in an O\((n^3)\) time algorithm for deciding whether a given mapping is a subtree distance.  相似文献   

8.
A cyclic edge-cut of a connected graph \(G\) is an edge set, the removal of which separates two cycles. If \(G\) has a cyclic edge-cut, then it is called cyclically separable. For a cyclically separable graph \(G\), the cyclic edge connectivity of a graph \(G\), denoted by \(\lambda _c(G)\), is the minimum cardinality over all cyclic edge cuts. Let \(X\) be a non-empty proper subset of \(V(G)\). If \([X,\overline{X}]=\{xy\in E(G)\ |\ x\in X, y\in \overline{X}\}\) is a minimum cyclic edge cut of \(G\), then \(X\) is called a \(\lambda _c\) -fragment of \(G\). A \(\lambda _c\)-fragment with minimum cardinality is called a \(\lambda _c\) -atom. Let \(G\) be a \(k (k\ge 3)\)-regular cyclically separable graph with \(\lambda _c(G)<g(k-2)\), where \(g\) is the girth of \(G\). A combination of the results of Nedela and Skoviera (Math Slovaca 45:481–499, 1995) and Xu and Liu (Australas J Combin 30:41–49, 2004) gives that if \(k\ne 5\) then any two distinct \(\lambda _c\)-atoms of \(G\) are disjoint. The remaining case of \(k=5\) is considered in this paper, and a new proof for Nedela and ?koviera’s result is also given. As a result, we obtain the following result. If \(X\) and \(X'\) are two distinct \(\lambda _c\)-atoms of \(G\) such that \(X\cap X'\ne \emptyset \), then \((k,g)=(5,3)\) and \(G[X]\cong K_4\). As corollaries, several previous results are easily obtained.  相似文献   

9.
In many fault detection problems, we want to identify all defective items from a set of n items using the minimum number of tests. Group testing is for the scenario where each test is on a subset of items, and tells whether the subset contains at least one defective item or not. In practice, the number d of defective items is often unknown in advance. In this paper, we propose a randomized group testing procedure RGT for the scenario where the number d of defectives is unknown in advance, and prove that RGT is competitive. By incorporating numerical results, we obtain improved upper bounds on the expected number of tests performed by RGT, for \(1\le d\le 10^6\). In particular, for \(1\le d\le 10^6\) and the special case where n is a power of 2, we obtain an upper bound of \(d\log \frac{n}{d}+Cd+O(\log d)\) with \(C\approx 2.67\) on the expected number of tests performed by RGT, which is better than the currently best upper bound in Cheng et al. (INFORMS J Comput 26(4):677–689, 2014). We conjecture that the above improved upper bounds based on numerical results from \(1\le d\le 10^6\) actually hold for all \(d\ge 1\).  相似文献   

10.
An L(2,1)-labeling of a graph \(G\) is an assignment of nonnegative integers to \(V(G)\) such that the difference between labels of adjacent vertices is at least \(2\), and the difference between labels of vertices that are distance two apart is at least 1. The span of an L(2,1)-labeling of a graph \(G\) is the difference between the maximum and minimum integers used by it. The minimum span of an L(2,1)-labeling of \(G\) is denoted by \(\lambda (G)\). This paper focuses on L(2,1)-labelings-number of the edge-multiplicity-paths-replacement \(G(rP_{k})\) of a graph \(G\). In this paper, we obtain that \( r\Delta +1 \le \lambda (G(rP_{5}))\le r\Delta +2\), \(\lambda (G(rP_{k}))= r\Delta +1\) for \(k\ge 6\); and \(\lambda (G(rP_{4}))\le (\Delta +1)r+1\), \(\lambda (G(rP_{3}))\le (\Delta +1)r+\Delta \) for any graph \(G\) with maximum degree \(\Delta \). And the L(2,1)-labelings-numbers of the edge-multiplicity-paths-replacement \(G(rP_{k})\) are completely determined for \(1\le \Delta \le 2\). And we show that the class of graphs \(G(rP_{k})\) with \(k\ge 3 \) satisfies the conjecture: \(\lambda ^{T}_{2}(G)\le \Delta +2\) by Havet and Yu (Technical Report 4650, 2002).  相似文献   

11.
For a graph \(G=(V, E)\), a weak \(\{2\}\)-dominating function \(f:V\rightarrow \{0,1,2\}\) has the property that \(\sum _{u\in N(v)}f(u)\ge 2\) for every vertex \(v\in V\) with \(f(v)= 0\), where N(v) is the set of neighbors of v in G. The weight of a weak \(\{2\}\)-dominating function f is the sum \(\sum _{v\in V}f(v)\) and the minimum weight of a weak \(\{2\}\)-dominating function is the weak \(\{2\}\)-domination number. In this paper, we introduce a discharging approach and provide a short proof for the lower bound of the weak \(\{2\}\)-domination number of \(C_n \Box C_5\), which was obtained by St?pień, et al. (Discrete Appl Math 170:113–116, 2014). Moreover, we obtain the weak \(\{2\}\)-domination numbers of \(C_n \Box C_3\) and \(C_n \Box C_4\).  相似文献   

12.
In a graph \(G=(V,E)\), a set \(D \subseteq V\) is said to be a dominating set of G if for every vertex \(u\in V{\setminus }D\), there exists a vertex \(v\in D\) such that \(uv\in E\). A secure dominating set of the graph G is a dominating set D of G such that for every \(u\in V{\setminus }D\), there exists a vertex \(v\in D\) such that \(uv\in E\) and \((D{\setminus }\{v\})\cup \{u\}\) is a dominating set of G. Given a graph G and a positive integer k, the secure domination problem is to decide whether G has a secure dominating set of cardinality at most k. The secure domination problem has been shown to be NP-complete for chordal graphs via split graphs and for bipartite graphs. In Liu et al. (in: Proceedings of 27th workshop on combinatorial mathematics and computation theory, 2010), it is asked to find a polynomial time algorithm for computing a minimum secure dominating set in a block graph. In this paper, we answer this by presenting a linear time algorithm to compute a minimum secure dominating set in block graphs. We then strengthen the known NP-completeness of the secure domination problem by showing that the secure domination problem is NP-complete for undirected path graphs and chordal bipartite graphs.  相似文献   

13.
Given a vertex-weighted undirected connected graph \(G = (V, E, \ell , \rho )\), where each edge \(e \in E\) has a length \(\ell (e) > 0\) and each vertex \(v \in V\) has a weight \(\rho (v) > 0\), a subset \(T \subseteq V\) of vertices and a set S containing all the points on edges in a subset \(E' \subseteq E\) of edges, the generalized absolute 1-center problem (GA1CP), an extension of the classic vertex-weighted absolute 1-center problem (A1CP), asks to find a point from S such that the longest weighted shortest path distance in G from it to T is minimized. This paper presents a simple FPTAS for GA1CP by traversing the edges in \(E'\) using a positive real number as step size. The FPTAS takes \(O( |E| |V| + |V|^2 \log \log |V| + \frac{1}{\epsilon } |E'| |T| {\mathcal {R}})\) time, where \({\mathcal {R}}\) is an input parameter size of the problem instance, for any given \(\epsilon > 0\). For instances with a small input parameter size \({\mathcal {R}}\), applying the FPTAS with \(\epsilon = \Theta (1)\) to the classic vertex-weighted A1CP can produce a \((1 + \Theta (1))\)-approximation in at most O(|E| |V|) time when the distance matrix is known and \(O(|E| |V| + |V|^2 \log \log |V|)\) time when the distance matrix is unknown, which are smaller than Kariv and Hakimi’s \(O(|E| |V| \log |V|)\)-time algorithm and \(O(|E| |V| \log |V| + |V|^3)\)-time algorithm, respectively.  相似文献   

14.
Let \(G=(V, E)\) be a graph. Denote \(d_G(u, v)\) the distance between two vertices u and v in G. An L(2, 1)-labeling of G is a function \(f: V \rightarrow \{0,1,\ldots \}\) such that for any two vertices u and v, \(|f(u)-f(v)| \ge 2\) if \(d_G(u, v) = 1\) and \(|f(u)-f(v)| \ge 1\) if \(d_G(u, v) = 2\). The span of f is the difference between the largest and the smallest number in f(V). The \(\lambda \)-number \(\lambda (G)\) of G is the minimum span over all L(2, 1)-labelings of G. In this paper, we conclude that the \(\lambda \)-number of each brick product graph is 5 or 6, which confirms Conjecture 6.1 stated in Li et al. (J Comb Optim 25:716–736, 2013).  相似文献   

15.
In this paper, we show that there is a \(\frac{5}{2}\ell \cdot \ln (1+k)\)-competitive randomized algorithm for the k-sever problem on weighted Hierarchically Separated Trees (HSTs) with depth \(\ell \) when \(n=k+1\) where n is the number of points in the metric space, which improved previous best competitive ratio \(12 \ell \ln (1+4\ell (1+k))\) by Bansal et al. (FOCS, pp 267–276, 2011).  相似文献   

16.
In this paper we give improved approximation algorithms for some network design problems. In the bounded-diameter or shallow-light \(k\)-Steiner tree problem (SL\(k\)ST), we are given an undirected graph \(G=(V,E)\) with terminals \(T\subseteq V\) containing a root \(r\in T\), a cost function \(c:E\rightarrow \mathbb {R}^+\), a length function \(\ell :E\rightarrow \mathbb {R}^+\), a bound \(L>0\) and an integer \(k\ge 1\). The goal is to find a minimum \(c\)-cost \(r\)-rooted Steiner tree containing at least \(k\) terminals whose diameter under \(\ell \) metric is at most \(L\). The input to the buy-at-bulk \(k\)-Steiner tree problem (BB\(k\)ST) is similar: graph \(G=(V,E)\), terminals \(T\subseteq V\) containing a root \(r\in T\), cost and length functions \(c,\ell :E\rightarrow \mathbb {R}^+\), and an integer \(k\ge 1\). The goal is to find a minimum total cost \(r\)-rooted Steiner tree \(H\) containing at least \(k\) terminals, where the cost of each edge \(e\) is \(c(e)+\ell (e)\cdot f(e)\) where \(f(e)\) denotes the number of terminals whose path to root in \(H\) contains edge \(e\). We present a bicriteria \((O(\log ^2 n),O(\log n))\)-approximation for SL\(k\)ST: the algorithm finds a \(k\)-Steiner tree with cost at most \(O(\log ^2 n\cdot \text{ opt }^*)\) where \(\text{ opt }^*\) is the cost of an LP relaxation of the problem and diameter at most \(O(L\cdot \log n)\). This improves on the algorithm of Hajiaghayi et al. (2009) (APPROX’06/Algorithmica’09) which had ratio \((O(\log ^4 n), O(\log ^2 n))\). Using this, we obtain an \(O(\log ^3 n)\)-approximation for BB\(k\)ST, which improves upon the \(O(\log ^4 n)\)-approximation of Hajiaghayi et al. (2009). We also consider the problem of finding a minimum cost \(2\)-edge-connected subgraph with at least \(k\) vertices, which is introduced as the \((k,2)\)-subgraph problem in Lau et al. (2009) (STOC’07/SICOMP09). This generalizes some well-studied classical problems such as the \(k\)-MST and the minimum cost \(2\)-edge-connected subgraph problems. We give an \(O(\log n)\)-approximation algorithm for this problem which improves upon the \(O(\log ^2 n)\)-approximation algorithm of Lau et al. (2009).  相似文献   

17.
An integer polyhedron \(P \subseteq {\mathbb {R}}^n\) has the linking property if for any \(f \in {\mathbb {Z}}^n\) and \(g \in {\mathbb {Z}}^n\) with \(f \le g\), P has an integer point between f and g if and only if it has both an integer point above f and an integer point below g. We prove that an integer polyhedron in the hyperplane \(\sum _{j=1}^n x_j=\beta \) is a base polyhedron if and only if it has the linking property. The result implies that an integer polyhedron has the strong linking property, as defined in Frank and Király (in: Cook, Lovász, Vygen (eds) Research trends in combinatorial optimization, Springer, Berlin, pp 87–126, 2009), if and only if it is a generalized polymatroid.  相似文献   

18.
A tree T in an edge-colored graph is called a proper tree if no two adjacent edges of T receive the same color. Let G be a connected graph of order n and k be an integer with \(2\le k \le n\). For \(S\subseteq V(G)\) and \(|S| \ge 2\), an S-tree is a tree containing the vertices of S in G. A set \(\{T_1,T_2,\ldots ,T_\ell \}\) of S-trees is called internally disjoint if \(E(T_i)\cap E(T_j)=\emptyset \) and \(V(T_i)\cap V(T_j)=S\) for \(1\le i\ne j\le \ell \). For a set S of k vertices of G, the maximum number of internally disjoint S-trees in G is denoted by \(\kappa (S)\). The k-connectivity \(\kappa _k(G)\) of G is defined by \(\kappa _k(G)=\min \{\kappa (S)\mid S\) is a k-subset of \(V(G)\}\). For a connected graph G of order n and for two integers k and \(\ell \) with \(2\le k\le n\) and \(1\le \ell \le \kappa _k(G)\), the \((k,\ell )\)-proper index \(px_{k,\ell }(G)\) of G is the minimum number of colors that are required in an edge-coloring of G such that for every k-subset S of V(G), there exist \(\ell \) internally disjoint proper S-trees connecting them. In this paper, we show that for every pair of positive integers k and \(\ell \) with \(k \ge 3\) and \(\ell \le \kappa _k(K_{n,n})\), there exists a positive integer \(N_1=N_1(k,\ell )\) such that \(px_{k,\ell }(K_n) = 2\) for every integer \(n \ge N_1\), and there exists also a positive integer \(N_2=N_2(k,\ell )\) such that \(px_{k,\ell }(K_{m,n}) = 2\) for every integer \(n \ge N_2\) and \(m=O(n^r) (r \ge 1)\). In addition, we show that for every \(p \ge c\root k \of {\frac{\log _a n}{n}}\) (\(c \ge 5\)), \(px_{k,\ell }(G_{n,p})\le 2\) holds almost surely, where \(G_{n,p}\) is the Erd?s–Rényi random graph model.  相似文献   

19.
The status of a vertex v in a connected graph G is the sum of the distances between v and all the other vertices of G. The subgraph induced by the vertices of minimum (maximum) status in G is called median (anti-median) of G. Let \(H=(G_1,G_2,r)\) denote a graph with \(G_1\) as the median and \(G_2\) as the anti-median of H, \(d(G_1,G_2)=r\) and both \(G_1\) and \(G_2\) are convex subgraphs of H. It is known that \((G_1,G_2,r)\) exists for every \(G_1\), \(G_2\) with \(r \ge \left\lfloor diam(G_1)/2\right\rfloor +\left\lfloor diam(G_2)/2\right\rfloor +2\). In this paper we show the existence of \((G_1,G_2,r)\) for every \(G_1\), \(G_2\) and \(r \ge 1\). We also obtain a sharp upper bound for the maximum status difference in a graph G.  相似文献   

20.
A double Roman dominating function (DRDF) on a graph \(G=(V,E)\) is a function \(f : V \rightarrow \{0, 1, 2, 3\}\) having the property that if \(f(v) = 0\), then vertex v must have at least two neighbors assigned 2 under f or one neighbor w with \(f(w)=3\), and if \(f(v)=1\), then vertex v must have at least one neighbor w with \(f(w)\ge 2\). The weight of a DRDF f is the value \(f(V) = \sum _{u \in V}f(u)\). The double Roman domination number \(\gamma _{dR}(G)\) of a graph G is the minimum weight of a DRDF on G. Beeler et al. (Discrete Appl Math 211:23–29, 2016) observed that every connected graph G having minimum degree at least two satisfies the inequality \(\gamma _{dR}(G)\le \frac{6n}{5}\) and posed the question whether this bound can be improved. In this paper, we settle the question and prove that for any connected graph G of order n with minimum degree at least two, \(\gamma _{dR}(G)\le \frac{8n}{7}\).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号