首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let \(k, m\) be positive integers, let \(G\) be a graph with \(m\) edges, and let \(h(m)=\sqrt{2m+\frac{1}{4}}-\frac{1}{2}\). Bollobás and Scott asked whether \(G\) admits a \(k\)-partition \(V_{1}, V_{2}, \ldots , V_{k}\) such that \(\max _{1\le i\le k} \{e(V_{i})\}\le \frac{m}{k^2}+\frac{k-1}{2k^2}h(m)\) and \(e(V_1, \ldots , V_k)\ge {k-1\over k} m +{k-1\over 2k}h(m) -\frac{(k-2)^{2}}{8k}\). In this paper, we present a positive answer to this problem on the graphs with large number of edges and small number of vertices with degrees being multiples of \(k\). Particularly, if \(d\) is not a multiple of \(k\) and \(G\) is \(d\)-regular with \(m\ge {9\over 128}k^4(k-2)^2\), then \(G\) admits a \(k\)-partition as desired. We also improve an earlier result by showing that \(G\) admits a partition \(V_{1}, V_{2}, \ldots , V_{k}\) such that \(e(V_{1},V_{2},\ldots ,V_{k})\ge \frac{k-1}{k}m+\frac{k-1}{2k}h(m)-\frac{(k-2)^{2}}{2(k-1)}\) and \(\max _{1\le i\le k}\{e(V_{i})\}\le \frac{m}{k^{2}}+\frac{k-1}{2k^{2}}h(m)\).  相似文献   

2.
A paired-dominating set of a graph G is a dominating set of vertices whose induced subgraph has a perfect matching, while the paired-domination number is the minimum cardinality of a paired-dominating set in the graph, denoted by \(\gamma _{pr}(G)\). Let G be a connected \(\{K_{1,3}, K_{4}-e\}\)-free cubic graph of order n. We show that \(\gamma _{pr}(G)\le \frac{10n+6}{27}\) if G is \(C_{4}\)-free and that \(\gamma _{pr}(G)\le \frac{n}{3}+\frac{n+6}{9(\lceil \frac{3}{4}(g_o+1)\rceil +1)}\) if G is \(\{C_{4}, C_{6}, C_{10}, \ldots , C_{2g_o}\}\)-free for an odd integer \(g_o\ge 3\); the extremal graphs are characterized; we also show that if G is a 2 -connected, \(\gamma _{pr}(G) = \frac{n}{3} \). Furthermore, if G is a connected \((2k+1)\)-regular \(\{K_{1,3}, K_4-e\}\)-free graph of order n, then \(\gamma _{pr}(G)\le \frac{n}{k+1} \), with equality if and only if \(G=L(F)\), where \(F\cong K_{1, 2k+2}\), or k is even and \(F\cong K_{k+1,k+2}\).  相似文献   

3.
In this paper, we consider the following single machine online tradeoff scheduling problem. A set of n independent jobs arrive online over time. Each job \(J_{j}\) has a release date \(r_{j}\), a processing time \(p_{j}\) and a delivery time \(q_{j}\). The characteristics of a job are unknown until it arrives. The goal is to find a schedule that minimizes the makespan \(C_{\max } = \max _{1 \le j \le n} C_{j}\) and the maximum lateness \(L_{\max } = \max _{1 \le j \le n} L_{j}\), where \(L_{j} = C_{j} + q_{j}\). For the problem, we present a nondominated \(( \rho , 1 + \displaystyle \frac{1}{\rho } )\)-competitive online algorithm for each \(\rho \) with \( 1 \le \rho \le \displaystyle \frac{\sqrt{5} + 1}{2}\).  相似文献   

4.
This paper is concerned with a semi-online scheduling problem with combined information on two identical parallel machines to minimize the makespan, where all the jobs have processing times in the interval \([1,\,t]\)  \((t\ge 1)\) and the jobs arrive in non-increasing order of their processing times. The objective is to minimize the makespan. For \(t\ge 1\), we obtain a lower bound \(\max _{N=1,2,3,\ldots }\left\{ \min \{\frac{4N+3}{4N+2}\,,\frac{Nt+N+1}{2N+1}\}\right\} \) and show that the competitive ratio of the \(LS\) algorithm achieves the lower bound.  相似文献   

5.
Let \(G\) be a connected graph with \(n\ge 2\) vertices. Let \(k\ge 1\) be an integer. Suppose that a fire breaks out at a vertex \(v\) of \(G\). A firefighter starts to protect vertices. At each step, the firefighter protects \(k\)-vertices not yet on fire. At the end of each step, the fire spreads to all the unprotected vertices that have a neighbour on fire. Let \(\hbox {sn}_k(v)\) denote the maximum number of vertices in \(G\) that the firefighter can save when a fire breaks out at vertex \(v\). The \(k\)-surviving rate \(\rho _k(G)\) of \(G\) is defined to be \(\frac{1}{n^2}\sum _{v\in V(G)} {\hbox {sn}}_{k}(v)\), which is the average proportion of saved vertices. In this paper, we prove that if \(G\) is a planar graph with \(n\ge 2\) vertices and without 5-cycles, then \(\rho _2(G)>\frac{1}{363}\).  相似文献   

6.
For a graph G, \(\alpha '(G)\) is the matching number of G. Let \(k\ge 2\) be an integer, \(K_{n}\) be the complete graph of order n. Assume that \(G_{1}, G_{2}, \ldots , G_{k}\) is a k-decomposition of \(K_{n}\). In this paper, we show that (1)
$$\begin{aligned} \left\lfloor \frac{n}{2}\right\rfloor \le \sum _{i=1}^{k} \alpha '(G_{i})\le k\left\lfloor \frac{n}{2}\right\rfloor . \end{aligned}$$
(2) If each \(G_{i}\) is non-empty for \(i = 1, \ldots , k\), then for \(n\ge 6k\),
$$\begin{aligned} \sum _{i=1}^{k} \alpha '(G_{i})\ge \left\lfloor \frac{n+k-1}{2}\right\rfloor . \end{aligned}$$
(3) If \(G_{i}\) has no isolated vertices for \(i = 1, \ldots , k\), then for \(n\ge 8k\),
$$\begin{aligned} \sum _{i=1}^{k} \alpha '(G_{i})\ge \left\lfloor \frac{n}{2}\right\rfloor +k. \end{aligned}$$
The bounds in (1), (2) and (3) are sharp. (4) When \(k= 2\), we characterize all the extremal graphs which attain the lower bounds in (1), (2) and (3), respectively.
  相似文献   

7.
Let \(G=G(V,E)\) be a graph. A proper coloring of G is a function \(f:V\rightarrow N\) such that \(f(x)\ne f(y)\) for every edge \(xy\in E\). A proper coloring of a graph G such that for every \(k\ge 1\), the union of any k color classes induces a \((k-1)\)-degenerate subgraph is called a degenerate coloring; a proper coloring of a graph with no two-colored \(P_{4}\) is called a star coloring. If a coloring is both degenerate and star, then we call it a degenerate star coloring of graph. The corresponding chromatic number is denoted as \(\chi _{sd}(G)\). In this paper, we employ entropy compression method to obtain a new upper bound \(\chi _{sd}(G)\le \lceil \frac{19}{6}\Delta ^{\frac{3}{2}}+5\Delta \rceil \) for general graph G.  相似文献   

8.
The reciprocal degree distance of a simple connected graph \(G=(V_G, E_G)\) is defined as \(\bar{R}(G)=\sum _{u,v \in V_G}(\delta _G(u)+\delta _G(v))\frac{1}{d_G(u,v)}\), where \(\delta _G(u)\) is the vertex degree of \(u\), and \(d_G(u,v)\) is the distance between \(u\) and \(v\) in \(G\). The reciprocal degree distance is an additive weight version of the Harary index, which is defined as \(H(G)=\sum _{u,v \in V_G}\frac{1}{d_G(u,v)}\). In this paper, the extremal \(\bar{R}\)-values on several types of important graphs are considered. The graph with the maximum \(\bar{R}\)-value among all the simple connected graphs of diameter \(d\) is determined. Among the connected bipartite graphs of order \(n\), the graph with a given matching number (resp. vertex connectivity) having the maximum \(\bar{R}\)-value is characterized. Finally, sharp upper bounds on \(\bar{R}\)-value among all simple connected outerplanar (resp. planar) graphs are determined.  相似文献   

9.
We continue the study of the performance of mildly greedy players in cut games initiated by Christodoulou et al. (Theoret Comput Sci 438:13–27, 2012), where a mildly greedy player is a selfish agent who is willing to deviate from a certain strategy profile only if her payoff improves by a factor of more than \(1+\epsilon \), for some given \(\epsilon \ge 0\). Hence, in presence of mildly greedy players, the classical concepts of pure Nash equilibria and best-responses generalize to those of \((1+\epsilon )\)-approximate pure Nash equilibria and \((1+\epsilon )\)-approximate best-responses, respectively. We first show that the \(\epsilon \)-approximate price of anarchy, that is the price of anarchy of \((1+\epsilon )\)-approximate pure Nash equilibria, is at least \(\frac{1}{2+\epsilon }\) and that this bound is tight for any \(\epsilon \ge 0\). Then, we evaluate the approximation ratio of the solutions achieved after a \((1+\epsilon )\)-approximate one-round walk starting from any initial strategy profile, where a \((1+\epsilon )\)-approximate one-round walk is a sequence of \((1+\epsilon )\)-approximate best-responses, one for each player. We improve the currently known lower bound on this ratio from \(\min \left\{ \frac{1}{4+2\epsilon },\frac{\epsilon }{4+2\epsilon }\right\} \) up to \(\min \left\{ \frac{1}{2+\epsilon },\frac{2\epsilon }{(1+\epsilon )(2+\epsilon )}\right\} \) and show that this is again tight for any \(\epsilon \ge 0\). An interesting and quite surprising consequence of our results is that the worst-case performance guarantee of the very simple solutions generated after a \((1+\epsilon )\)-approximate one-round walk is the same as that of \((1+\epsilon )\)-approximate pure Nash equilibria when \(\epsilon \ge 1\) and of that of subgame perfect equilibria (i.e., Nash equilibria for greedy players with farsighted, rather than myopic, rationality) when \(\epsilon =1\).  相似文献   

10.
We study the problem of maximizing a monotone non-decreasing function \(f\) subject to a matroid constraint. Fisher, Nemhauser and Wolsey have shown that, if \(f\) is submodular, the greedy algorithm will find a solution with value at least \(\frac{1}{2}\) of the optimal value under a general matroid constraint and at least \(1-\frac{1}{e}\) of the optimal value under a uniform matroid \((\mathcal {M} = (X,\mathcal {I})\), \(\mathcal {I} = \{ S \subseteq X: |S| \le k\}\)) constraint. In this paper, we show that the greedy algorithm can find a solution with value at least \(\frac{1}{1+\mu }\) of the optimum value for a general monotone non-decreasing function with a general matroid constraint, where \(\mu = \alpha \), if \(0 \le \alpha \le 1\); \(\mu = \frac{\alpha ^K(1-\alpha ^K)}{K(1-\alpha )}\) if \(\alpha > 1\); here \(\alpha \) is a constant representing the “elemental curvature” of \(f\), and \(K\) is the cardinality of the largest maximal independent sets. We also show that the greedy algorithm can achieve a \(1 - (\frac{\alpha + \cdots + \alpha ^{k-1}}{1+\alpha + \cdots + \alpha ^{k-1}})^k\) approximation under a uniform matroid constraint. Under this unified \(\alpha \)-classification, submodular functions arise as the special case \(0 \le \alpha \le 1\).  相似文献   

11.
This paper investigates an online hierarchical scheduling problem on m parallel identical machines. Our goal is to minimize the total completion time of all jobs. Each job has a unit processing time and a hierarchy. The job with a lower hierarchy can only be processed on the first machine and the job with a higher hierarchy can be processed on any one of m machines. We first show that the lower bound of this problem is at least \(1+\min \{\frac{1}{m}, \max \{\frac{2}{\lceil x\rceil +\frac{x}{\lceil x\rceil }+3}, \frac{2}{\lfloor x\rfloor +\frac{x}{\lfloor x\rfloor }+3}\}\), where \(x=\sqrt{2m+4}\). We then present a greedy algorithm with tight competitive ratio of \(1+\frac{2(m-1)}{m(\sqrt{4m-3}+1)}\). The competitive ratio is obtained in a way of analyzing the structure of the instance in the worst case, which is different from the most common method of competitive analysis. In particular, when \(m=2\), we propose an optimal online algorithm with competitive ratio of \(16\) \(/\) \(13\), which complements the previous result which provided an asymptotically optimal algorithm with competitive ratio of 1.1573 for the case where the number of jobs n is infinite, i.e., \(n\rightarrow \infty \).  相似文献   

12.
In the Minimum Weight Partial Connected Set Cover problem, we are given a finite ground set \(U\), an integer \(q\le |U|\), a collection \(\mathcal {E}\) of subsets of \(U\), and a connected graph \(G_{\mathcal {E}}\) on vertex set \(\mathcal {E}\), the goal is to find a minimum weight subcollection of \(\mathcal {E}\) which covers at least \(q\) elements of \(U\) and induces a connected subgraph in \(G_{\mathcal {E}}\). In this paper, we derive a “partial cover property” for the greedy solution of the Minimum Weight Set Cover problem, based on which we present (a) for the weighted version under the assumption that any pair of sets in \(\mathcal {E}\) with nonempty intersection are adjacent in \(G_{\mathcal {E}}\) (the Minimum Weight Partial Connected Vertex Cover problem falls into this range), an approximation algorithm with performance ratio \(\rho (1+H(\gamma ))+o(1)\), and (b) for the cardinality version under the assumption that any pair of sets in \(\mathcal {E}\) with nonempty intersection are at most \(d\)-hops away from each other (the Minimum Partial Connected \(k\)-Hop Dominating Set problem falls into this range), an approximation algorithm with performance ratio \(2(1+dH(\gamma ))+o(1)\), where \(\gamma =\max \{|X|:X\in \mathcal {E}\}\), \(H(\cdot )\) is the Harmonic number, and \(\rho \) is the performance ratio for the Minimum Quota Node-Weighted Steiner Tree problem.  相似文献   

13.
For \(S\subseteq G\), let \(\kappa (S)\) denote the maximum number r of edge-disjoint trees \(T_1, T_2, \ldots , T_r\) in G such that \(V(T_i)\cap V(T_j)=S\) for any \(i,j\in \{1,2,\ldots ,r\}\) and \(i\ne j\). For every \(2\le k\le n\), the k-connectivity of G, denoted by \(\kappa _k(G)\), is defined as \(\kappa _k(G)=\hbox {min}\{\kappa (S)| S\subseteq V(G)\ and\ |S|=k\}\). Clearly, \(\kappa _2(G)\) corresponds to the traditional connectivity of G. In this paper, we focus on the structure of minimally 2-connected graphs with \(\kappa _{3}=2\). Denote by \(\mathcal {H}\) the set of minimally 2-connected graphs with \(\kappa _{3}=2\). Let \(\mathcal {B}\subseteq \mathcal {H}\) and every graph in \(\mathcal {B}\) is either \(K_{2,3}\) or the graph obtained by subdividing each edge of a triangle-free 3-connected graph. We obtain that \(H\in \mathcal {H}\) if and only if \(H\in \mathcal {B}\) or H can be constructed from one or some graphs \(H_{1},\ldots ,H_{k}\) in \(\mathcal {B}\) (\(k\ge 1\)) by applying some operations recursively.  相似文献   

14.
We study the maximum coverage problem with group budget constraints (MCG). The input consists of a ground set X, a collection \(\psi \) of subsets of X each of which is associated with a combinatorial structure such that for every set \(S_j\in \psi \), a cost \(c(S_j)\) can be calculated based on the combinatorial structure associated with \(S_j\), a partition \(G_1,G_2,\ldots ,G_l\) of \(\psi \), and budgets \(B_1,B_2,\ldots ,B_l\), and B. A solution to the problem consists of a subset H of \(\psi \) such that \(\sum _{S_j\in H} c(S_j) \le B\) and for each \(i \in {1,2,\ldots ,l}\), \(\sum _{S_j \in H\cap G_i}c(S_j)\le B_i\). The objective is to maximize \(|\bigcup _{S_j\in H}S_j|\). In our work we use a new and improved analysis of the greedy algorithm to prove that it is a \((\frac{\alpha }{3+2\alpha })\)-approximation algorithm, where \(\alpha \) is the approximation ratio of a given oracle which takes as an input a subset \(X^{new}\subseteq X\) and a group \(G_i\) and returns a set \(S_j\in G_i\) which approximates the optimal solution for \(\max _{D\in G_i}\frac{|D\cap X^{new}|}{c(D)}\). This analysis that is shown here to be tight for the greedy algorithm, improves by a factor larger than 2 the analysis of the best known approximation algorithm for MCG.  相似文献   

15.
A double Roman dominating function (DRDF) on a graph \(G=(V,E)\) is a function \(f : V \rightarrow \{0, 1, 2, 3\}\) having the property that if \(f(v) = 0\), then vertex v must have at least two neighbors assigned 2 under f or one neighbor w with \(f(w)=3\), and if \(f(v)=1\), then vertex v must have at least one neighbor w with \(f(w)\ge 2\). The weight of a DRDF f is the value \(f(V) = \sum _{u \in V}f(u)\). The double Roman domination number \(\gamma _{dR}(G)\) of a graph G is the minimum weight of a DRDF on G. Beeler et al. (Discrete Appl Math 211:23–29, 2016) observed that every connected graph G having minimum degree at least two satisfies the inequality \(\gamma _{dR}(G)\le \frac{6n}{5}\) and posed the question whether this bound can be improved. In this paper, we settle the question and prove that for any connected graph G of order n with minimum degree at least two, \(\gamma _{dR}(G)\le \frac{8n}{7}\).  相似文献   

16.
Given a graph \(G=(V,E,D,W)\), the generalized covering salesman problem (CSP) is to find a shortest tour in G such that each vertex \(i\in D\) is either on the tour or within a predetermined distance L to an arbitrary vertex \(j\in W\) on the tour, where \(D\subset V\),\(W\subset V\). In this paper, we propose the online CSP, where the salesman will encounter at most k blocked edges during the traversal. The edge blockages are real-time, meaning that the salesman knows about a blocked edge when it occurs. We present a lower bound \(\frac{1}{1 + (k + 2)L}k+1\) and a CoverTreeTraversal algorithm for online CSP which is proved to be \(k+\alpha \)-competitive, where \(\alpha =0.5+\frac{(4k+2)L}{OPT}+2\gamma \rho \), \(\gamma \) is the approximation ratio for Steiner tree problem and \(\rho \) is the maximal number of locations that a customer can be served. When \(\frac{L}{\texttt {OPT}}\rightarrow 0\), our algorithm is near optimal. The problem is also extended to the version with service cost, and similar results are derived.  相似文献   

17.
For a connected graph \(G = \left( V,E\right) \), a set \(S\subseteq E(G)\) is called a total edge-to-vertex monophonic set of a connected graph G if the subgraph induced by S has no isolated edges. The total edge-to-vertex monophonic number \(m_{tev}(G)\) of G is the minimum cardinality of its total edge-to-vertex monophonic set of G. The total edge-to-vertex monophonic number of certain classes of graphs is determined and some of its general properties are studied. Connected graphs of size \(q \ge 3 \) with total edge-to-vertex monophonic number q is characterized. It is shown that for positive integers \(r_{m},d_{m}\) and \(l\ge 4\) with \(r_{m}< d_{m} \le 2 r_{m}\), there exists a connected graph G with \(\textit{rad}_ {m} G = r_{m}\), \(\textit{diam}_ {m} G = d_{m}\) and \(m_{tev}(G) = l\) and also shown that for every integers a and b with \(2 \le a \le b\), there exists a connected graph G such that \( m_{ev}\left( G\right) = b\) and \(m_{tev}(G) = a + b\). A forcing subset for S of minimum cardinality is a minimum forcing subset of S. The forcing total edge-to-vertex monophonic number of S, denoted by \(f_{tev}(S)\) is the cardinality of a minimum forcing subset of S. The forcing total edge-to-vertex monophonic number of G, denoted by \(f_{tev}(G) = \textit{min}\{f_{tev}(S)\}\), where the minimum is taken over all total edge-to-vertex monophonic set S in G. The forcing total edge-to-vertex monophonic number of certain classes of graphs are determined and some of its general properties are studied. It is shown that for every integers a and b with \(0 \le a \le b\) and \(b \ge 2\), there exists a connected graph G such that \(f_{tev}(G) = a\) and \( m _{tev}(G) = b\), where \( f _{tev}(G)\) is the forcing total edge-to-vertex monophonic number of G.  相似文献   

18.
Consider a scheduling problem in which a set of tasks needs to be scheduled on m parallel processors. Each task \(T_i\) consists of a set of jobs with interjob communication demands, represented by a weighted, undirected graph \(G_i\). The processors are assumed to be interconnected by a shared communication channel, which can be used by jobs to communicate among each other while being processed in parallel. In each time step, the scheduler assigns jobs to the processors and allows any processed job to use a certain capacity of the channel in order to satisfy (parts of) its communication demands to adjacent jobs processed in the same step. The goal is to find a schedule with minimum length in which the communication demands of all jobs are satisfied. We show that this problem is NP-hard in the strong sense even if the number of processors is constant and the underlying graph is a single path or a forest with arbitrary constant maximum degree. Consequently, we design and analyze approximation algorithms with asymptotic approximation ratio \(\min \{1.8, 1.5 \frac{m}{m-1}\}+1\) if the underlying graph G, the union of the \(G_i\), is a forest. For general graphs it is \(\min \left\{ 1.8, \frac{1.5m}{m-1}\right\} \cdot \left( \text {arb}(G) + \frac{5}{3}\right) \), where \(\text {arb}(G)\) denotes the arboricity of G.  相似文献   

19.
In this paper, we investigate the semi-online scheduling problem with known maximum job size on two uniform machines with the speed ratio s≥1. The objective is to minimize the makespan. Two algorithms are presented, where the first is optimal for \(1\leq s\leq\sqrt{2}\), and the second is optimal for 1.559≤s≤2 and \(s\ge \frac{3+\sqrt{17}}{2}\). In addition, the improvement on lower bounds is made for \(2.  相似文献   

20.
A tree T in an edge-colored graph is called a proper tree if no two adjacent edges of T receive the same color. Let G be a connected graph of order n and k be an integer with \(2\le k \le n\). For \(S\subseteq V(G)\) and \(|S| \ge 2\), an S-tree is a tree containing the vertices of S in G. A set \(\{T_1,T_2,\ldots ,T_\ell \}\) of S-trees is called internally disjoint if \(E(T_i)\cap E(T_j)=\emptyset \) and \(V(T_i)\cap V(T_j)=S\) for \(1\le i\ne j\le \ell \). For a set S of k vertices of G, the maximum number of internally disjoint S-trees in G is denoted by \(\kappa (S)\). The k-connectivity \(\kappa _k(G)\) of G is defined by \(\kappa _k(G)=\min \{\kappa (S)\mid S\) is a k-subset of \(V(G)\}\). For a connected graph G of order n and for two integers k and \(\ell \) with \(2\le k\le n\) and \(1\le \ell \le \kappa _k(G)\), the \((k,\ell )\)-proper index \(px_{k,\ell }(G)\) of G is the minimum number of colors that are required in an edge-coloring of G such that for every k-subset S of V(G), there exist \(\ell \) internally disjoint proper S-trees connecting them. In this paper, we show that for every pair of positive integers k and \(\ell \) with \(k \ge 3\) and \(\ell \le \kappa _k(K_{n,n})\), there exists a positive integer \(N_1=N_1(k,\ell )\) such that \(px_{k,\ell }(K_n) = 2\) for every integer \(n \ge N_1\), and there exists also a positive integer \(N_2=N_2(k,\ell )\) such that \(px_{k,\ell }(K_{m,n}) = 2\) for every integer \(n \ge N_2\) and \(m=O(n^r) (r \ge 1)\). In addition, we show that for every \(p \ge c\root k \of {\frac{\log _a n}{n}}\) (\(c \ge 5\)), \(px_{k,\ell }(G_{n,p})\le 2\) holds almost surely, where \(G_{n,p}\) is the Erd?s–Rényi random graph model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号