首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Lasso achieves variance reduction and variable selection by solving an ?1‐regularized least squares problem. Huang (2003) claims that ‘there always exists an interval of regularization parameter values such that the corresponding mean squared prediction error for the Lasso estimator is smaller than for the ordinary least square estimator’. This result is correct. However, its proof in Huang (2003) is not. This paper presents a corrected proof of the claim, which exposes and uses some interesting fundamental properties of the Lasso.  相似文献   

2.
This paper is concerned with Hintsberger type weighted shrinkage estimator of a parameter when a target value of the same is available. Expressions for the bias and the mean squared error of the estimator are derived. Some results concerning the bias, existence of uniformly minimum mean squared error estimator etc. are proved. For certain c to ices of the weight function, numerical results are presented for the pretest type weighted shrinkage estimator of the mean of normal as well as exponential distributions.  相似文献   

3.
Based on right-censored data from a lifetime distribution F , a smooth nonparametric estimator of the quantile function Q (p) is given by Qn(p)=h 1jjQn(t)K((t-p)/h)dt, where QR(p) denotes the product-limit quantile function. Extensive Monte Carlo simulations indicate that at fixed p this kernel-type quantile estimator has smaller mean squared error than (L(p) for a range of values of the bandwidth h. A method of selecting an "optimal" bandwidth (in the sense of small estimated mean squared error) based on the bootstrap is investigated yielding results consistent with the simulation study. The bootstrap is also used to obtain interval estimates for Q (p) after determining the optimal value of h.  相似文献   

4.
A modified bootstrap estimator of the mean of the population selected from two populations is proposed which is a convex combination of the two sample means, where the weights are random quantities. The estimator is shown to be strongly consistent. The small sample behavior of the estimator is investigated and compared with some competitors by means of Monte Carlo studies. It is found that the newly proposed estimator has smaller mean squared error for a wide range of parameter values.  相似文献   

5.
In this paper, we consider an adjustment of degrees of freedom in the minimum mean squared error (MMSE) estimator, We derive the exact MSE of the adjusted MMSE (AMMSE) estimator, and compare the MSE of the AMMSE estimator with those of the Stein-(SR), positive-part Stein-rule (PSR) and MMSE estimators by numerical evaluations. It is shown that the adjustment of degrees of freedom is effective when the noncentrality parameter is close to zero, and the MSE performance of the MMSE estimator can be improved in the wide region of the noncentrality parameter by the adjustment, ft is also shown that the AMMSE estimator can have the smaller MSE than the PSR estimator in the wide region of the noncentrality parameter  相似文献   

6.
In this paper, we analytically derive the exact formula for the mean squared error (MSE) of two weighted average (WA) estimators for each individual regression coefficient. Further, we execute numerical evaluations to investigate small sample properties of the WA estimators, and compare the MSE performance of the WA estimators with the other shrinkage estimators and the usual OLS estimator. Our numerical results show that (1) the WA estimators have smaller MSE than the other shrinkage estimators and the OLS estimator over a wide region of parameter space; (2) the range where the relative MSE of the WA estimator is smaller than that of the OLS estimator gets narrower as the number of explanatory variables k increases.  相似文献   

7.
If the unknown mean of a univariate population is sufficiently close to the value of an initial guess then an appropriate shrinkage estimator has smaller average squared error than the sample mean. This principle has been known for some time, but it does not appear to have found extension to problems of interval estimation. The author presents valid two‐sided 95% and 99% “shrinkage” confidence intervals for the mean of a normal distribution. These intervals are narrower than the usual interval based on the Student distribution when the population mean lies in such an “effective interval.” A reduction of 20% in the mean width of the interval is possible when the population mean is sufficiently close to the value of the guess. The author also describes a modification to existing shrinkage point estimators of the general univariate mean that enables the effective interval to be enlarged.  相似文献   

8.
This paper considers estimation of an unknown distribution parameter in situations where we believe that the parameter belongs to a finite interval. We propose for such situations an interval shrinkage approach which combines in a coherent way an unbiased conventional estimator and non-sample information about the range of plausible parameter values. The approach is based on an infeasible interval shrinkage estimator which uniformly dominates the underlying conventional estimator with respect to the mean square error criterion. This infeasible estimator allows us to obtain useful feasible counterparts. The properties of these feasible interval shrinkage estimators are illustrated both in a simulation study and in empirical examples.  相似文献   

9.
In this article, we present a principal component Liu-type estimator (LTE) by combining the principal component regression (PCR) and LTE to deal with the multicollinearity problem. The superiority of the new estimator over the PCR estimator, the ordinary least squares estimator (OLSE) and the LTE are studied under the mean squared error matrix. The selection of the tuning parameter in the proposed estimator is also discussed. Finally, a numerical example is given to explain our theoretical results.  相似文献   

10.
In this paper, we consider a regression model and propose estimators which are the weighted averages of two estimators among three estimators; the Stein-rule (SR), the minimum mean squared error (MMSE), and the adjusted minimum mean-squared error (AMMSE) estimators. It is shown that one of the proposed estimators has smaller mean-squared error (MSE) than the positive-part Stein-rule (PSR) estimator over a moderate region of parameter space when the number of the regression coefficients is small (i.e., 3), and its MSE performance is comparable to the PSR estimator even when the number of the regression coefficients is not so small.  相似文献   

11.
This paper investigates the predictive mean squared error performance of a modified double k-class estimator by incorporating the Stein variance estimator. Recent studies show that the performance of the Stein rule estimator can be improved by using the Stein variance estimator. However, as we demonstrate below, this conclusion does not hold in general for all members of the double k-class estimators. On the other hand, an estimator is found to have smaller predictive mean squared error than the Stein variance-Stein rule estimator, over quite large parts of the parameter space.  相似文献   

12.
Nonparametric and parametric estimators are combined to minimize the mean squared error among their linear combinations. The combined estimator is consistent and for large sample sizes has a smaller mean squared error than the nonparametric estimator when the parametric assumption is violated. If the parametric assumption holds, the combined estimator has a smaller MSE than the parametric estimator. Our simulation examples focus on mean estimation when data may follow a lognormal distribution, or can be a mixture with an exponential or a uniform distribution. Motivating examples illustrate possible application areas.  相似文献   

13.
An estimator for location, given a sample of only four or five observations, is proposed. The underlying distribution on of the sample may (with probability p) be contaminated by an outlier from a rightly-skewed distribution. The estimator minimizes the maximum mean squared error over all values of p. In fact, there exists an estimator which is unbiased in both the outlier - free and extreme-outlier cases, but its mean square error is substantially higher than the mean squared error for the minimax estimator. Mean squared errors for various underlying distributional situations are calculated and compared with those of other location estimators such as the mean and the median.  相似文献   

14.
In this paper, we show a sufficient condition for an operational variant of the minimum mean squared error estimator (simply, the minimum MSE estimator) to dominate the ordinary least squares (OLS) estimator. It is also shown numerically that the minimum MSE estimator dominates the OLS estimator if the number of regression coefficients is larger than or equal to three, even if the sufficient condition is not satisfied. When the number of regression coefficients is smaller than three, our numerical results show that the gain in MSE of using the minimum MSE estimator is larger than the loss.  相似文献   

15.
This paper considers the estimation of multivariate random effects that are measured with error, but for which there are no replications. Using structural simplification of the correlation of the data, separate estimates are generated for the covariance of the random effects and the covariance of the error. An estimator of the random effects based on a truncated eigen structure is defined, and matrix mean squared error and its trace (risk) are analyzed, with comparison to the maximum likelihood estimator (m.l.e) and also to the Stein-like estimator of Efron and Morris (1972). It is shown that the estimator has risk which is smaller than the risk of the maximum likelihood estimator and the Efron-Morris estimator in most cases.  相似文献   

16.
This paper discusses a pre-test regression estimator which uses the least squares estimate when it is “large” and a ridge regression estimate for “small” regression coefficients, where the preliminary test is applied separately to each regression coefficient in turn to determine whether it is “large” or “small.” For orthogonal regressors, the exact finite-sample bias and mean squared error of the pre-test estimator are derived. The latter is less biased than a ridge estimator, and over much of the parameter space the pre-test estimator has smaller mean squared error than least squares. A ridge estimator is found to be inferior to the pre-test estimator in terms of mean squared error in many situations, and at worst the latter estimator is only slightly less efficient than the former at commonly used significance levels.  相似文献   

17.
This article proposes a semiparametric estimator of the parameter in a conditional duration model when there are inequality constraints on some parameters and the error distribution may be unknown. We propose to estimate the parameter by a constrained version of an unrestricted semiparametrically efficient estimator. The main requirement for applying this method is that the initial unrestricted estimator converges in distribution. Apart from this, additional regularity conditions on the data generating process or the likelihood function, are not required. Hence the method is applicable to a broad range of models where the parameter space is constrained by inequality constraints, such as the conditional duration models. In a simulation study involving conditional duration models, the overall performance of the constrained estimator was better than its competitors, in terms of mean squared error. A data example is used to illustrate the method.  相似文献   

18.
Let X 1, X 2, ..., X n be a random sample from a normal population with mean μ and variance σ 2. In many real life situations, specially in lifetime or reliability estimation, the parameter μ is known a priori to lie in an interval [a, ∞). This makes the usual maximum likelihood estimator (MLE) ̄ an inadmissible estimator of μ with respect to the squared error loss. This is due to the fact that it may take values outside the parameter space. Katz (1961) and Gupta and Rohatgi (1980) proposed estimators which lie completely in the given interval. In this paper we derive some new estimators for μ and present a comparative study of the risk performance of these estimators. Both the known and unknown variance cases have been explored. The new estimators are shown to have superior risk performance over the existing ones over large portions of the parameter space.  相似文献   

19.
Kupper and Meydrech and Myers and Lahoda introduced the mean squared error (MSE) approach to study response surface designs, Duncan and DeGroot derived a criterion for optimality of linear experimental designs based on minimum mean squared error. However, minimization of the MSE of an estimator maxr renuire some knowledge about the unknown parameters. Without such knowledge construction of designs optimal in the sense of MSE may not be possible. In this article a simple method of selecting the levels of regressor variables suitable for estimating some functions of the parameters of a lognormal regression model is developed using a criterion for optimality based on the variance of an estimator. For some special parametric functions, the criterion used here is equivalent to the criterion of minimizing the mean squared error. It is found that the maximum likelihood estimators of a class of parametric functions can be improved substantially (in the sense of MSE) by proper choice of the values of regressor variables. Moreover, our approach is applicable to analysis of variance as well as regression designs.  相似文献   

20.
Abstract

In this article, we propose a new improved and efficient biased estimation method which is a modified restricted Liu-type estimator satisfying some sub-space linear restrictions in the binary logistic regression model. We study the properties of the new estimator under the mean squared error matrix criterion and our results show that under certain conditions the new estimator is superior to some other estimators. Moreover, a Monte Carlo simulation study is conducted to show the performance of the new estimator in the simulated mean squared error and predictive median squared errors sense. Finally, a real application is considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号