首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Approximate Bayesian computation (ABC) is a popular technique for analysing data for complex models where the likelihood function is intractable. It involves using simulation from the model to approximate the likelihood, with this approximate likelihood then being used to construct an approximate posterior. In this paper, we consider methods that estimate the parameters by maximizing the approximate likelihood used in ABC. We give a theoretical analysis of the asymptotic properties of the resulting estimator. In particular, we derive results analogous to those of consistency and asymptotic normality for standard maximum likelihood estimation. We also discuss how sequential Monte Carlo methods provide a natural method for implementing our likelihood‐based ABC procedures.  相似文献   

3.
ABSTRACT

In this article we introduce a new missing data model, based on a standard parametric Hidden Markov Model (HMM), for which information on the latent Markov chain is given since this one reaches a fixed state (and until it leaves this state). We study, under mild conditions, the consistency and asymptotic normality of the maximum likelihood estimator. We point out also that the underlying Markov chain does not need to be ergodic, and that identifiability of the model is not tractable in a simple way (unlike standard HMMs), but can be studied using various technical arguments.  相似文献   

4.
ABSTRACT.  This paper develops a new contrast process for parametric inference of general hidden Markov models, when the hidden chain has a non-compact state space. This contrast is based on the conditional likelihood approach, often used for ARCH-type models. We prove the strong consistency of the conditional likelihood estimators under appropriate conditions. The method is applied to the Kalman filter (for which this contrast and the exact likelihood lead to asymptotically equivalent estimators) and to the discretely observed stochastic volatility models.  相似文献   

5.
This article introduces a parsimonious structure for mixture of autoregressive models, where the weighting coefficients are determined through latent random variables, as functions of all past observations. These latent variables follow a Markov model. We propose a dynamic programming algorithm for forecasting, which reduces the volume of calculations. We also derive limiting behavior of unconditional first moment of the process and an appropriate upper bound for the limiting value of the variance. Further more, we show convergence and stability of the second moment. Finally, we illustrate the efficacy of the proposed model by simulation.  相似文献   

6.
Abstract

To improve the empirical performance of the Black-Scholes model, many alternative models have been proposed to address leptokurtic feature, volatility smile, and volatility clustering effects of the asset return distributions. However, analytical tractability remains a problem for most alternative models. In this article, we study a class of hidden Markov models including Markov switching models and stochastic volatility models, that can incorporate leptokurtic feature, volatility clustering effects, as well as provide analytical solutions to option pricing. We show that these models can generate long memory phenomena when the transition probabilities depend on the time scale. We also provide an explicit analytic formula for the arbitrage-free price of the European options under these models. The issues of statistical estimation and errors in option pricing are also discussed in the Markov switching models.  相似文献   

7.
Abstract.  In practical applications, when testing parametric restrictions for hidden Markov models (HMMs), one frequently encounters non-standard situations such as testing for zero entries in the transition matrix, one-sided tests for the parameters of the transition matrix or for the components of the stationary distribution of the underlying Markov chain, or testing boundary restrictions on the parameters of the state-dependent distributions. In this paper, we briefly discuss how the relevant asymptotic distribution theory for the likelihood ratio test (LRT) when the true parameter is on the boundary extends from the independent and identically distributed situation to HMMs. Then we concentrate on discussing a number of relevant examples. The finite-sample performance of the LRT in such situations is investigated in a simulation study. An application to series of epileptic seizure counts concludes the paper.  相似文献   

8.
9.
We consider the development of Bayesian Nonparametric methods for product partition models such as Hidden Markov Models and change point models. Our approach uses a Mixture of Dirichlet Process (MDP) model for the unknown sampling distribution (likelihood) for the observations arising in each state and a computationally efficient data augmentation scheme to aid inference. The method uses novel MCMC methodology which combines recent retrospective sampling methods with the use of slice sampler variables. The methodology is computationally efficient, both in terms of MCMC mixing properties, and robustness to the length of the time series being investigated. Moreover, the method is easy to implement requiring little or no user-interaction. We apply our methodology to the analysis of genomic copy number variation.  相似文献   

10.
A new form of non-linear autoregressive time series is proposed to model solar radiation data, by specifying joint marginal distributions at low lags to be multivariate Gaussian mixtures. The model is also a type of multiprocess dynamic linear model, but with the advantage that the likelihood has a closed form.  相似文献   

11.
In the present paper we examine finite mixtures of multivariate Poisson distributions as an alternative class of models for multivariate count data. The proposed models allow for both overdispersion in the marginal distributions and negative correlation, while they are computationally tractable using standard ideas from finite mixture modelling. An EM type algorithm for maximum likelihood (ML) estimation of the parameters is developed. The identifiability of this class of mixtures is proved. Properties of ML estimators are derived. A real data application concerning model based clustering for multivariate count data related to different types of crime is presented to illustrate the practical potential of the proposed class of models.  相似文献   

12.
We show how the concept of hidden Markov model may be accommodated in a setting involving multiple sequences of observations. The resulting class of models allows for both interrelationships between different sequences and serial dependence within sequences. Missing values in the observation sequences may be handled in a straightforward manner. We also examine a group of methods, based upon the observed Fisher Information matrix, for estimating the covariance matrix of the parameter estimates. We illustrate the methods with both real and simulated data sets.  相似文献   

13.
ABSTRACT

We propose a simple yet powerful method to construct strictly stationary Markovian models with given but arbitrary invariant distributions. The idea is based on a Poisson-type transform modulating the dependence structure in the model. An appealing feature of our approach is the possibility to control the underlying transition probabilities and, therefore, incorporate them within standard estimation methods. Given the resulting representation of the transition density, a Gibbs sampler algorithm based on the slice method is proposed and implemented. In the discrete-time case, special attention is placed to the class of generalized inverse Gaussian distributions. In the continuous case, we first provide a brief treatment of the class of gamma distributions, and then extend it to cover other invariant distributions, such as the generalized extreme value class. The proposed approach and estimation algorithm are illustrated with real financial datasets. Supplementary materials for this article are available online.  相似文献   

14.
A method for expanding the choices for fits of discrete data is given. The method is very simple: a breakpoint is chosen for the data set on either side of which two separate discrete distributions are fit. Thus, the method is a mixture of two discrete distributions. The method is appealing in light of the ease with which the likelihood equations simplify. For illustrative purposes, the method is used on the data set that motivated its conception.  相似文献   

15.
This work presents a new linear calibration model with replication by assuming that the error of the model follows a skew scale mixture of the normal distributions family, which is a class of asymmetric thick-tailed distributions that includes the skew normal distribution and symmetric distributions. In the literature, most calibration models assume that the errors are normally distributed. However, the normal distribution is not suitable when there are atypical observations and asymmetry. The estimation of the calibration model parameters are done numerically by the EM algorithm. A simulation study is carried out to verify the properties of the maximum likelihood estimators. This new approach is applied to a real dataset from a chemical analysis.  相似文献   

16.
We develop a sequential Monte Carlo algorithm for the infinite hidden Markov model (iHMM) that allows us to perform on-line inferences on both system states and structural (static) parameters. The algorithm described here provides a natural alternative to Markov chain Monte Carlo samplers previously developed for the iHMM, and is particularly helpful in applications where data is collected sequentially and model parameters need to be continuously updated. We illustrate our approach in the context of both a simulation study and a financial application.  相似文献   

17.
Genomic alterations have been linked to the development and progression of cancer. The technique of comparative genomic hybridization (CGH) yields data consisting of fluorescence intensity ratios of test and reference DNA samples. The intensity ratios provide information about the number of copies in DNA. Practical issues such as the contamination of tumor cells in tissue specimens and normalization errors necessitate the use of statistics for learning about the genomic alterations from array CGH data. As increasing amounts of array CGH data become available, there is a growing need for automated algorithms for characterizing genomic profiles. Specifically, there is a need for algorithms that can identify gains and losses in the number of copies based on statistical considerations, rather than merely detect trends in the data.We adopt a Bayesian approach, relying on the hidden Markov model to account for the inherent dependence in the intensity ratios. Posterior inferences are made about gains and losses in copy number. Localized amplifications (associated with oncogene mutations) and deletions (associated with mutations of tumor suppressors) are identified using posterior probabilities. Global trends such as extended regions of altered copy number are detected. Because the posterior distribution is analytically intractable, we implement a Metropolis-within-Gibbs algorithm for efficient simulation-based inference. Publicly available data on pancreatic adenocarcinoma, glioblastoma multiforme, and breast cancer are analyzed, and comparisons are made with some widely used algorithms to illustrate the reliability and success of the technique.  相似文献   

18.
X. Guyon  C. Hardouin 《Statistics》2013,47(4):339-363
This study deals with time dynamics of Markov fields defined on a finite set of sites with state space <$>E<$>, focussing on Markov Chain Markov Field (MCMF) evolution. Such a model is characterized by two families of potentials: the instantaneous interaction potentials, and the time delay potentials. Four models are specified: auto-exponential dynamics (<$>E = {\of R}^+<$>), auto-normal dynamics (<$>E = {\of R}<$>), auto-Poissonian dynamics (<$>E = {\of N}<$>) and auto-logistic dynamics ( E qualitative and finite). Sufficient conditions ensuring ergodicity and strong law of large numbers are given by using a Lyapunov criterion of stability, and the conditional pseudo-likelihood statistics are summarized. We discuss the identification procedure of the two Markovian graphs and look for validation tests using martingale central limit theorems. An application to meteorological data illustrates such a modelling.  相似文献   

19.
Summary. We consider the construction of perfect samplers for posterior distributions associated with mixtures of exponential families and conjugate priors, starting with a perfect slice sampler in the spirit of Mira and co-workers. The methods rely on a marginalization akin to Rao–Blackwellization and illustrate the duality principle of Diebolt and Robert. A first approximation embeds the finite support distribution on the latent variables within a continuous support distribution that is easier to simulate by slice sampling, but we later demonstrate that the approximation can be very poor. We conclude by showing that an alternative perfect sampler based on a single backward chain can be constructed. This alternative can handle much larger sample sizes than the slice sampler first proposed.  相似文献   

20.
The effect of skewness on hypothesis tests for the existence of a mixture of univariate and bivariate normal distributions is examined through a Monte Carlo study. A likelihood ratio test based on results of the simultaneous estimation of skewness parameters, derived from power transformations, with mixture parameters is proposed. This procedure detects the difference between inherent distributional skewness and the apparent skewness which is a manifestation of the mixture of several distributions. The properties of this test are explored through a simulation study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号