首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four testing procedures are considered for testing the response rate of one sample correlated binary data with a cluster size of one or two, which often occurs in otolaryngologic and ophthalmologic studies. Although an asymptotic approach is often used for statistical inference, it is criticized for unsatisfactory type I error control in small sample settings. An alternative to the asymptotic approach is an unconditional approach. The first unconditional approach is the one based on estimation, also known as parametric bootstrap (Lee and Young in Stat Probab Lett 71(2):143–153, 2005). The other two unconditional approaches considered in this article are an approach based on maximization (Basu in J Am Stat Assoc 72(358):355–366, 1977), and an approach based on estimation and maximization (Lloyd in Biometrics 64(3):716–723, 2008a). These two unconditional approaches guarantee the test size and are generally more reliable than the asymptotic approach. We compare these four approaches in conjunction with a test proposed by Lee and Dubin (Stat Med 13(12):1241–1252, 1994) and a likelihood ratio test derived in this article, in regards to type I error rate and power for sample sizes from small to medium. An example from an otolaryngologic study is provided to illustrate the various testing procedures. The unconditional approach based on estimation and maximization using the test in Lee and Dubin (Stat Med 13(12):1241–1252, 1994) is preferable due to the power advantageous.  相似文献   

2.
The cross-ratio is an important local measure that characterizes the dependence between bivariate failure times. To estimate the cross-ratio in follow-up studies where delayed entry is present, estimation procedures need to account for left truncation. Ignoring left truncation yields biased estimates of the cross-ratio. We extend the method of Hu et al., Biometrika 98:341–354 (2011) by modifying the risk sets and relevant indicators to handle left-truncated bivariate failure times, which yields the cross-ratio estimate with desirable asymptotic properties that can be shown by the same techniques used in Hu et al., Biometrika 98:341–354 (2011). Numerical studies are conducted.  相似文献   

3.
In this work we prove that for an exchangeable multivariate normal distribution the joint distribution of a linear combination of order statistics and a linear combination of their concomitants together with an auxiliary variable is skew normal. We also investigate some special cases, thus extending the results of Olkin and Viana (J Am Stat Assoc 90:1373–1379, 1995), Loperfido (Test 17:370–380, 2008a) and Sheikhi and Jamalizadeh (Paper 52:885–892, 2011).  相似文献   

4.
In this work we derive closed form expressions for the probability density functions and moments of the quotient and product of the components of the bivariate generalized exponential distribution introduced by Kundu and Gupta (J Multivariate Anal, 100:581–593, 2009) and compute the percentage points. The derivations will be useful for practitioners of this bivariate model. We then give a real data application of the product.  相似文献   

5.
We consider Bayesian parameter inference associated to partially-observed stochastic processes that start from a set B 0 and are stopped or killed at the first hitting time of a known set A. Such processes occur naturally within the context of a wide variety of applications. The associated posterior distributions are highly complex and posterior parameter inference requires the use of advanced Markov chain Monte Carlo (MCMC) techniques. Our approach uses a recently introduced simulation methodology, particle Markov chain Monte Carlo (PMCMC) (Andrieu et al. 2010), where sequential Monte Carlo (SMC) (Doucet et al. 2001; Liu 2001) approximations are embedded within MCMC. However, when the parameter of interest is fixed, standard SMC algorithms are not always appropriate for many stopped processes. In Chen et al. (2005), Del Moral (2004), the authors introduce SMC approximations of multi-level Feynman-Kac formulae, which can lead to more efficient algorithms. This is achieved by devising a sequence of sets from B 0 to A and then performing the resampling step only when the samples of the process reach intermediate sets in the sequence. The choice of the intermediate sets is critical to the performance of such a scheme. In this paper, we demonstrate that multi-level SMC algorithms can be used as a proposal in PMCMC. In addition, we introduce a flexible strategy that adapts the sets for different parameter proposals. Our methodology is illustrated on the coalescent model with migration.  相似文献   

6.
In this paper, maximum likelihood and Bayesian approaches have been used to obtain the estimation of \(P(X<Y)\) based on a set of upper record values from Kumaraswamy distribution. The existence and uniqueness of the maximum likelihood estimates of the Kumaraswamy distribution parameters are obtained. Confidence intervals, exact and approximate, as well as Bayesian credible intervals are constructed. Bayes estimators have been developed under symmetric (squared error) and asymmetric (LINEX) loss functions using the conjugate and non informative prior distributions. The approximation forms of Lindley (Trabajos de Estadistica 3:281–288, 1980) and Tierney and Kadane (J Am Stat Assoc 81:82–86, 1986) are used for the Bayesian cases. Monte Carlo simulations are performed to compare the different proposed methods.  相似文献   

7.
Max-stable processes have proved to be useful for the statistical modeling of spatial extremes. For statistical inference it is often assumed that there is no temporal dependence; i.e., that the observations at spatial locations are independent in time. In a first approach we construct max-stable space–time processes as limits of rescaled pointwise maxima of independent Gaussian processes, where the space–time covariance functions satisfy weak regularity conditions. This leads to so-called Brown–Resnick processes. In a second approach, we extend Smith’s storm profile model to a space–time setting. We provide explicit expressions for the bivariate distribution functions, which are equal under appropriate choice of the parameters. We also show how the space–time covariance function of the underlying Gaussian process can be interpreted in terms of the tail dependence function in the limiting max-stable space–time process.  相似文献   

8.
We deal with sampling by variables with two-way protection in the case of a $N\>(\mu ,\sigma ^2)$ distributed characteristic with unknown $\sigma $ . The LR sampling plan proposed by Lieberman and Resnikoff (JASA 50: 457 ${-}$ 516, 1955) and the BSK sampling plan proposed by Bruhn-Suhr and Krumbholz (Stat. Papers 31: 195–207, 1990) are based on the UMVU and the plug-in estimator, respectively. For given $p_1$ (AQL), $p_2$ (RQL) and $\alpha ,\beta $ (type I and II errors) we present an algorithm allowing to determine the optimal LR and BSK plans having minimal sample size among all plans satisfying the corresponding two-point condition on the OC. An R (R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/ 2012) package, ExLiebeRes‘ (Krumbholz and Steuer ExLiebeRes: calculating exact LR- and BSK-plans, R-package version 0.9.9. http://exlieberes.r-forge.r-project.org 2012) implementing that algorithm is provided to the public.  相似文献   

9.
Online (also ‘real-time’ or ‘sequential’) signal extraction from noisy and outlier-interfered data streams is a basic but challenging goal. Fitting a robust Repeated Median (Siegel in Biometrika 69:242–244, 1982) regression line in a moving time window has turned out to be a promising approach (Davies et al. in J. Stat. Plan. Inference 122:65–78, 2004; Gather et al. in Comput. Stat. 21:33–51, 2006; Schettlinger et al. in Biomed. Eng. 51:49–56, 2006). The level of the regression line at the rightmost window position, which equates to the current time point in an online application, is then used for signal extraction. However, the choice of the window width has a large impact on the signal extraction, and it is impossible to predetermine an optimal fixed window width for data streams which exhibit signal changes like level shifts and sudden trend changes. We therefore propose a robust test procedure for the online detection of such signal changes. An algorithm including the test allows for online window width adaption, meaning that the window width is chosen w.r.t. the current data situation at each time point. Comparison studies show that our new procedure outperforms an existing Repeated Median filter with automatic window width selection (Schettlinger et al. in Int. J. Adapt. Control Signal Process. 24:346–362, 2010).  相似文献   

10.
Approximate Bayesian computation (ABC) is a popular approach to address inference problems where the likelihood function is intractable, or expensive to calculate. To improve over Markov chain Monte Carlo (MCMC) implementations of ABC, the use of sequential Monte Carlo (SMC) methods has recently been suggested. Most effective SMC algorithms that are currently available for ABC have a computational complexity that is quadratic in the number of Monte Carlo samples (Beaumont et al., Biometrika 86:983?C990, 2009; Peters et al., Technical report, 2008; Toni et al., J.?Roy. Soc. Interface 6:187?C202, 2009) and require the careful choice of simulation parameters. In this article an adaptive SMC algorithm is proposed which admits a computational complexity that is linear in the number of samples and adaptively determines the simulation parameters. We demonstrate our algorithm on a toy example and on a birth-death-mutation model arising in epidemiology.  相似文献   

11.
In this paper, we propose a data-driven model selection approach for the nonparametric estimation of covariance functions under very general moments assumptions on the stochastic process. Observing i.i.d replications of the process at fixed observation points, we select the best estimator among a set of candidates using a penalized least squares estimation procedure with a fully data-driven penalty function, extending the work in Bigot et al. (Electron J Stat 4:822–855, 2010). We then provide a practical application of this estimate for a Kriging interpolation procedure to forecast rainfall data.  相似文献   

12.
In this article, one- and two-sample Bayesian prediction intervals based on progressively Type-II censored data are derived. For the illustration of the developed results, the exponential, Pareto, Weibull and Burr Type-XII models are used as examples. Some of the previous results in the literature such as Dunsmore (Technometrics 16:455–460, 1974), Nigm and Hamdy (Commun Stat Theory Methods 16:1761–1772, 1987), Nigm (Commun Stat Theory Methods 18:897–911, 1989), Al-Hussaini and Jaheen (Commun Stat Theory Methods 24:1829–1842, 1995), Al-Hussaini (J Stat Plan Inference 79:79–91, 1999), Ali Mousa (J Stat Comput Simul 71: 163–181, 2001) and Ali Mousa and Jaheen (Stat Pap 43:587–593, 2002) can be achieved as special cases of our results. Finally, some numerical computations are presented for illustrating all the proposed inferential procedures.  相似文献   

13.
Approximate Bayesian Computational (ABC) methods, or likelihood-free methods, have appeared in the past fifteen years as useful methods to perform Bayesian analysis when the likelihood is analytically or computationally intractable. Several ABC methods have been proposed: MCMC methods have been developed by Marjoram et al. (2003) and by Bortot et al. (2007) for instance, and sequential methods have been proposed among others by Sisson et al. (2007), Beaumont et al. (2009) and Del Moral et al. (2012). Recently, sequential ABC methods have appeared as an alternative to ABC-PMC methods (see for instance McKinley et al., 2009; Sisson et al., 2007). In this paper a new algorithm combining population-based MCMC methods with ABC requirements is proposed, using an analogy with the parallel tempering algorithm (Geyer 1991). Performance is compared with existing ABC algorithms on simulations and on a real example.  相似文献   

14.
Bien and Tibshirani (Biometrika, 98(4):807–820, 2011) have proposed a covariance graphical lasso method that applies a lasso penalty on the elements of the covariance matrix. This method is definitely useful because it not only produces sparse and positive definite estimates of the covariance matrix but also discovers marginal independence structures by generating exact zeros in the estimated covariance matrix. However, the objective function is not convex, making the optimization challenging. Bien and Tibshirani (Biometrika, 98(4):807–820, 2011) described a majorize-minimize approach to optimize it. We develop a new optimization method based on coordinate descent. We discuss the convergence property of the algorithm. Through simulation experiments, we show that the new algorithm has a number of advantages over the majorize-minimize approach, including its simplicity, computing speed and numerical stability. Finally, we show that the cyclic version of the coordinate descent algorithm is more efficient than the greedy version.  相似文献   

15.
In this paper, we discuss the extension of some diagnostic procedures to multivariate measurement error models with scale mixtures of skew-normal distributions (Lachos et?al., Statistics 44:541?C556, 2010c). This class provides a useful generalization of normal (and skew-normal) measurement error models since the random term distributions cover symmetric, asymmetric and heavy-tailed distributions, such as skew-t, skew-slash and skew-contaminated normal, among others. Inspired by the EM algorithm proposed by Lachos et?al. (Statistics 44:541?C556, 2010c), we develop a local influence analysis for measurement error models, following Zhu and Lee??s (J R Stat Soc B 63:111?C126, 2001) approach. This is because the observed data log-likelihood function associated with the proposed model is somewhat complex and Cook??s well-known approach can be very difficult to apply to achieve local influence measures. Some useful perturbation schemes are also discussed. In addition, a score test for assessing the homogeneity of the skewness parameter vector is presented. Finally, the methodology is exemplified through a real data set, illustrating the usefulness of the proposed methodology.  相似文献   

16.
Nonlinear structural equation modeling provides many advantages over analyses based on manifest variables only. Several approaches for the analysis of latent interaction effects have been developed within the last 15 years, including the partial least squares product indicator approach (PLS-PI), the constrained product indicator approach using the LISREL software (LISREL-PI), and the distribution-analytic latent moderated structural equations approach (LMS) using the Mplus program. An assumed advantage of PLS-PI is that it is able to deal with very large numbers of indicators, while LISREL-PI and LMS have not been investigated under such conditions. In a Monte Carlo study, the performance of LISREL-PI and LMS was compared to PLS-PI results previously reported in Chin et al. (2003) and Goodhue et al. (2007) for identical conditions. The latent interaction model included six indicator variables for the measurement of each latent predictor variable and the latent criterion, and sample size was N=100. The results showed that PLS-PI’s linear and interaction parameter estimates were downward biased, while parameter estimates were unbiased for LISREL-PI and LMS. True standard errors were smallest for PLS-PI, while the power to detect the latent interaction effect was higher for LISREL-PI and LMS. Compared to the symmetric distributions of interaction parameter estimates for LISREL-PI and LMS, PLS-PI showed a distribution that was symmetric for positive values, but included outlying negative estimates. Possible explanations for these findings are discussed.  相似文献   

17.
This paper obtains the joint and conditional Lagrange multiplier (LM) tests for a spatial lag regression model with spatial auto-regressive error derived in Anselin (Reg Sci Urban Ecom 26:77–104, 1996) using artificial double length regressions (DLR). These DLR tests and their corresponding LM tests are compared using an illustrative example and a Monte Carlo simulation.  相似文献   

18.
In this paper, we derive elementary M- and optimally robust asymptotic linear (AL)-estimates for the parameters of an Ornstein–Uhlenbeck process. Simulation and estimation of the process are already well-studied, see Iacus (Simulation and inference for stochastic differential equations. Springer, New York, 2008). However, in order to protect against outliers and deviations from the ideal law the formulation of suitable neighborhood models and a corresponding robustification of the estimators are necessary. As a measure of robustness, we consider the maximum asymptotic mean square error (maxasyMSE), which is determined by the influence curve (IC) of AL estimates. The IC represents the standardized influence of an individual observation on the estimator given the past. In a first step, we extend the method of M-estimation from Huber (Robust statistics. Wiley, New York, 1981). In a second step, we apply the general theory based on local asymptotic normality, AL estimates, and shrinking neighborhoods due to Kohl et?al. (Stat Methods Appl 19:333–354, 2010), Rieder (Robust asymptotic statistics. Springer, New York, 1994), Rieder (2003), and Staab (1984). This leads to optimally robust ICs whose graph exhibits surprising behavior. In the end, we discuss the estimator construction, i.e. the problem of constructing an estimator from the family of optimal ICs. Therefore we carry out in our context the One-Step construction dating back to LeCam (Asymptotic methods in statistical decision theory. Springer, New York, 1969) and compare it by means of simulations with MLE and M-estimator.  相似文献   

19.
Grubbs’s model (Grubbs, Encycl Stat Sci 3:42–549, 1983) is used for comparing several measuring devices, and it is common to assume that the random terms have a normal (or symmetric) distribution. In this paper, we discuss the extension of this model to the class of scale mixtures of skew-normal distributions. Our results provide a useful generalization of the symmetric Grubbs’s model (Osorio et al., Comput Stat Data Anal, 53:1249–1263, 2009) and the asymmetric skew-normal model (Montenegro et al., Stat Pap 51:701–715, 2010). We discuss the EM algorithm for parameter estimation and the local influence method (Cook, J Royal Stat Soc Ser B, 48:133–169, 1986) for assessing the robustness of these parameter estimates under some usual perturbation schemes. The results and methods developed in this paper are illustrated with a numerical example.  相似文献   

20.
Among the many tools suited to detect local clusters in group-level data, Kulldorff–Nagarwalla’s spatial scan statistic gained wide popularity (Kulldorff and Nagarwalla in Stat Med 14(8):799–810, 1995). The underlying assumptions needed for making statistical inference feasible are quite strong, as counts in spatial units are assumed to be independent Poisson distributed random variables. Unfortunately, outcomes in spatial units are often not independent of each other, and risk estimates of areas that are close to each other will tend to be positively correlated as they share a number of spatially varying characteristics. We therefore introduce a Bayesian model-based algorithm for cluster detection in the presence of spatially autocorrelated relative risks. Our approach has been made possible by the recent development of new numerical methods based on integrated nested Laplace approximation, by which we can directly compute very accurate approximations of posterior marginals within short computational time (Rue et al. in JRSS B 71(2):319–392, 2009). Simulated data and a case study show that the performance of our method is at least comparable to that of Kulldorff–Nagarwalla’s statistic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号