首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increased cell proliferation increases the opportunity for transformations of normal cells to malignant cells via intermediate cells. Nongenotoxic cytotoxic carcinogens that increase cell proliferation rates to replace necrotic cells are likely to have a threshold dose for cytotoxicity below which necrosis and hence, carcinogenesis do not occur. Thus, low dose cancer risk estimates based upon nonthreshold, linear extrapolation are inappropriate for this situation. However, a threshold dose is questionable if a nongenotoxic carcinogen acts via a cell receptor. Also, a nongenotoxic carcinogen that increases the cell proliferation rate, via the cell division rate and/or cell removal rate by apoptosis, by augmenting an existing endogenous mechanism is not likely to have a threshold dose. Whether or not a threshold dose exists for nongenotoxic carcinogens, it is of interest to study the relationship between lifetime tumor incidence and the cell proliferation rate. The Moolgavkar–Venzon–Knudson biologically based stochastic two-stage clonal expansion model is used to describe a carcinogenic process. Because the variability in cell proliferation rates among animals often makes it impossible to detect changes of less than 20% in the rate, it is shown that small changes in the cell proliferation rate, that may be obscured by the background noise in rates, can produce large changes in the lifetime tumor incidence as calculated from the Moolgavkar–Venzon–Knudson model. That is, dose response curves for cell proliferation and tumor incidence do not necessarily mimic each other. This makes the use of no observed effect levels (NOELs) for cell proliferation rates often inadmissible for establishing acceptable daily intakes (ADIs) of nongenotoxic carcinogens. In those cases where low dose linearity is not likely, a potential alternative to a NOEL is a benchmark dose corresponding to a small increase in the cell proliferation rate, e. g., 1%, to which appropriate safety (uncertainty) factors can be applied to arrive at an ADI.  相似文献   

2.
This article examines how scientists use human, animal, and bacterial evidence to develop policy recommendations about the health consequences of human exposure to modern chemicals. Human evidence is limited because many epidemiological studies are contaminated with selection effects or unobserved heterogeneity. Changes in the aggregate incidence of morbidity (such as cancer) in the population over time are not a substitute for the lack of good individual-level data because incidence data are contaminated by the medicalization of cancer. Animal tests are also problematic because the expense of conducting experiments leads researchers to use only enough animals to allow detection of large differences in cancer incidence between controls and experimental animals that can only arise if the exposure doses are large. Predictions about the cancer incidence that would result in humans at much lower exposure levels, thus, require statistical inferences that implicitly make choices between false positive and false negative inference errors. Policy recommendations about carcinogens, therefore, are as much the product of value choices as "scientific" knowledge.  相似文献   

3.
Experimental Design of Bioassays for Screening and Low Dose Extrapolation   总被引:1,自引:0,他引:1  
Relatively high doses of chemicals generally are employed in animal bioassays to detect potential carcinogens with relatively small numbers of animals. The problem investigated here is the development of experimental designs which are effective for high to low dose extrapolation for tumor incidence as well as for screening (detecting) carcinogens. Several experimental designs are compared over a wide range of different dose response curves. Linear extrapolation is used below the experimental data range to establish an upper bound on carcinogenic risk at low doses. The goal is to find experimental designs which minimize the upper bound on low dose risk estimates (i.e., maximize the allowable dose for a given level of risk). The maximum tolerated dose (MTD) is employed for screening purposes. Among the designs investigated, experiments with doses at the MTD, 1/2 MTD, 1/4 MTD, and controls generally provide relatively good data for low dose extrapolation with relatively good power for detecting carcinogens. For this design, equal numbers of animals per dose level perform as well as unequal allocations.  相似文献   

4.
One-Hit Models of Carcinogenesis: Conservative or Not?   总被引:3,自引:0,他引:3  
One-hit formulas are widely believed to be "conservative" when used to analyze carcinogenesis bioassays, in the sense that they will rarely underestimate risks of cancer at low exposures. Such formulas are generally applied to the lifetime incidence of cancer at a specific site, with risks estimated from animal data at zero dose (control), and two or more additional doses that are appreciable fractions of a maximum tolerated dose. No empirical study has demonstrated that the one-hit formula is conservative in the sense described. The Carcinogenesis Bioassay Database System contains data on 1212 separate bioassays of 308 chemical substances tested at exactly three evaluable doses. These provided sufficient data to examine 8432 specific combinations of cancer site with sex, species, and chemical. For each of these we fitted a one-hit formula to the zero and maximum dose data points, then examined the relation of the fitted curve to the incidence rate observed at the mid-dose, with and without adjustment for intercurrent mortality. Both underestimates and overestimates of risk at mid-dose occurred substantially more often than expected by chance. We cannot tell whether such underestimates would occur at lower doses, but offer six biological reasons why underestimates might be expected. In a high percentage of animal bioassays, the one-hit formula is not conservative when applied in the usual way to animal data. It remains possible that the one-hit formula may indeed be conservative at sufficiently low doses (below the observational range), but the usual procedure, applied to the usual dose range, can be nonconservative in estimating the slope of the formula at such low doses. Risk assessments for regulation of carcinogens should incorporate some measure of additional uncertainty.  相似文献   

5.
There has been considerable discussion regarding the conservativeness of low-dose cancer risk estimates based upon linear extrapolation from upper confidence limits. Various groups have expressed a need for best (point) estimates of cancer risk in order to improve risk/benefit decisions. Point estimates of carcinogenic potency obtained from maximum likelihood estimates of low-dose slope may be highly unstable, being sensitive both to the choice of the dose–response model and possibly to minimal perturbations of the data. For carcinogens that augment background carcinogenic processes and/or for mutagenic carcinogens, at low doses the tumor incidence versus target tissue dose is expected to be linear. Pharmacokinetic data may be needed to identify and adjust for exposure-dose nonlinearities. Based on the assumption that the dose response is linear over low doses, a stable point estimate for low-dose cancer risk is proposed. Since various models give similar estimates of risk down to levels of 1%, a stable estimate of the low-dose cancer slope is provided by ŝ = 0.01/ED01, where ED01 is the dose corresponding to an excess cancer risk of 1%. Thus, low-dose estimates of cancer risk are obtained by, risk = ŝ × dose. The proposed procedure is similar to one which has been utilized in the past by the Center for Food Safety and Applied Nutrition, Food and Drug Administration. The upper confidence limit, s , corresponding to this point estimate of low-dose slope is similar to the upper limit, q 1 obtained from the generalized multistage model. The advantage of the proposed procedure is that ŝ provides stable estimates of low-dose carcinogenic potency, which are not unduly influenced by small perturbations of the tumor incidence rates, unlike 1.  相似文献   

6.
Natural or manufactured products may contain mixtures of carcinogens and the human environment certainly contains mixtures of carcinogens. Various authors have shown that the total risk of a mixture can be approximated by the sum of the risks of the individual components under a variety of conditions at low doses. Under these conditions, summing the individual estimated upper bound risks, as currently often done, is too conservative because it is unlikely that all risks for a mixture are at their maximum levels simultaneously. In the absence of synergism, a simple procedure is proposed for estimating a more appropriate upper bound of the additive risks for a mixture of carcinogens. These simple limits also apply to noncancer endpoints when the risks of the components are approximately additive.  相似文献   

7.
In light of the Armitage-Doll multistage carcinogenesis theory, this paper examines the assumption that an additive relative risk relationship is indicative of two carcinogens that affect the same stage in the cancer process. We present formulas to compute excess cancer risks for a variety of patterns for limited exposure durations to two carcinogens that affect the first and penultimate stages; and using an index of synergy proposed by Thomas (1982), we find a number of these patterns to produce additive, or nearly additive, relative risk relationships. The consistent feature of these patterns is that the two exposure periods are of short duration and occur close together.  相似文献   

8.
The extent of carcinogen regulation under existing U.S. environmental statutes is assessed by developing measures of the scope and stringency of regulation. While concern about cancer risk has played an important political role in obtaining support for pollution control programs, it has not provided the predominant rationale for most regulatory actions taken to date. Less than 20% of all standards established to limit concentrations of chemicals in various media address carcinogens. Restrictions on chemical use are more frequently based on concerns about noncancer human health or ecological effects. Of the chemicals in commercial use which have been identified as potential human carcinogens on the basis of rodent bioassays, only a small proportion are regulated. There is an inverse relationship between the scope of regulatory coverage and the stringency of regulatory requirements: the largest percentages of identified carcinogens are affected by the least stringent requirements, such as information disclosure. Standards based on de minimis cancer risk levels have been established for only 10% of identified carcinogens and are restricted to one medium: water. Complete bans on use have affected very few chemicals. The general role that carcinogenicity now plays in the regulatory process is not dramatically different from that of other adverse human health effects: if a substance is identified as a hazard, it may eventually be subject to economically achievable and technically feasible restrictions.  相似文献   

9.
United States regulatory agencies use no-threshold models for estimating carcinogenic risks. Other countries use no-threshold models for carcinogens that are genotoxic and threshold models for carcinogens that are not genotoxic, such as 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD or "dioxin"). The U.S. Environmental Protection Agency has proposed a revision of the carcinogenic potency estimate for TCDD that is based on neither a threshold nor a no-threshold model; instead, it is a compromise between risk numbers generated by the two irreconcilably different models. This paper discusses the revision and its implications.  相似文献   

10.
The Social Benefits of Expedited Risk Assessments   总被引:1,自引:0,他引:1  
The present regulation of carcinogens is quite slow; hundreds of substances that have tested positive for carcinogenicity in animal bioassays have not been addressed by the U.S. regulatory system. This carries with it unappreciated social, economic, and public health costs. However, there are readily available expedited approximation procedures for assessing the potency of carcinogens whose use has substantial benefits that outweigh any costs from less science-intensive and less extensively documented assessments. These benefits can be seen by using a model to suggest the magnitude of social costs in regulating carcinogens by current conventional methods compared with expedited procedures for assessing the potency of known carcinogens. Two scenarios, one in accordance with current agency presumptions and one which assumes extreme unreliability in animal data and in the accuracy of potency assessments, compare conventional science-intensive and expedited procedures. On both, the total social costs of expedited procedures are lower than conventional procedures across a wide range of values assigned for individual mistakes of under regulation and over regulation. It appears better to evaluate a larger universe of known carcinogens somewhat less intensively for each substance than to evaluate a small proportion of that same universe very carefully and delay considering the rest.  相似文献   

11.
Hwang  Jing-Shiang  Chen  James J. 《Risk analysis》1999,19(6):1071-1076
The estimation of health risks from exposure to a mixture of chemical carcinogens is generally based on the combination of information from several available single compound studies. The current practice of directly summing the upper bound risk estimates of individual carcinogenic components as an upper bound on the total risk of a mixture is known to be generally too conservative. Gaylor and Chen (1996, Risk Analysis) proposed a simple procedure to compute an upper bound on the total risk using only the upper confidence limits and central risk estimates of individual carcinogens. The Gaylor-Chen procedure was derived based on an underlying assumption of the normality for the distributions of individual risk estimates. In this paper we evaluated the Gaylor-Chen approach in terms of the coverage probability. The performance of the Gaylor-Chen approach in terms the coverages of the upper confidence limits on the true risks of individual carcinogens. In general, if the coverage probabilities for the individual carcinogens are all approximately equal to the nominal level, then the Gaylor-Chen approach should perform well. However, the Gaylor-Chen approach can be conservative or anti-conservative if some or all individual upper confidence limit estimates are conservative or anti-conservative.  相似文献   

12.
Risk assessments for carcinogens are being developed through an accelerated process in California as a part of the state's implementation of Proposition 65, the Safe Drinking Water and Toxic Enforcement Act. Estimates of carcinogenic potency made by the California Department of Health Services (CDHS) are generally similar to estimates made by the U.S. Environmental Protection Agency (EPA). The largest differences are due to EPA's use of the maximum likelihood estimate instead of CDHS' use of the upper 95% confidence bounds on potencies derived from human data and to procedures used to correct for studies of short duration or with early mortality. Numerical limits derived from these potency estimates constitute "no significant risk" levels, which govern exemption from Proposition 65's discharge prohibition and warning requirements. Under Proposition 65 regulations, lifetime cancer risks less than 10(-5) are not significant and cumulative intake is not considered. Following these regulations, numerical limits for a number of Proposition 65 carcinogens that are applicable to the control of toxic discharges are less stringent than limits under existing federal water pollution control laws. Thus, existing federal limits will become the Proposition 65 levels for discharge. Chemicals currently not covered by federal and state controls will eventually be subject to discharge limitations under Proposition 65. "No significant risk" levels (expressed in terms of daily intake of carcinogens) also trigger warning requirements under Proposition 65 that are more extensive than existing state or federal requirements. A variety of chemical exposures from multiple sources are identified that exceed Proposition 65's "no significant risk" levels.  相似文献   

13.
For the vast majority of chemicals that have cancer potency estimates on IRIS, the underlying database is deficient with respect to early-life exposures. This data gap has prevented derivation of cancer potency factors that are relevant to this time period, and so assessments may not fully address children's risks. This article provides a review of juvenile animal bioassay data in comparison to adult animal data for a broad array of carcinogens. This comparison indicates that short-term exposures in early life are likely to yield a greater tumor response than short-term exposures in adults, but similar tumor response when compared to long-term exposures in adults. This evidence is brought into a risk assessment context by proposing an approach that: (1) does not prorate children's exposures over the entire life span or mix them with exposures that occur at other ages; (2) applies the cancer slope factor from adult animal or human epidemiology studies to the children's exposure dose to calculate the cancer risk associated with the early-life period; and (3) adds the cancer risk for young children to that for older children/adults to yield a total lifetime cancer risk. The proposed approach allows for the unique exposure and pharmacokinetic factors associated with young children to be fully weighted in the cancer risk assessment. It is very similar to the approach currently used by U.S. EPA for vinyl chloride. The current analysis finds that the database of early life and adult cancer bioassays supports extension of this approach from vinyl chloride to other carcinogens of diverse mode of action. This approach should be enhanced by early-life data specific to the particular carcinogen under analysis whenever possible.  相似文献   

14.
15.
Human populations are exposed to environmental carcinogens in both indoor and outdoor atmospheres. Recent studies indicate that pollutant concentrations are generally higher in indoor atmospheres than in outdoor. Environmental pollutants that occur in indoor air from a variety of sources include radon, asbestos, organic and inorganic compounds, and certain particles (e.g., tobacco smoke). Some of the gases or vapors are adsorbed on suspended particulate matter, whereas others exist entirely in the gas phase or are distributed between the latter and a particle-bound state. Because of differences in chemical and physical properties, each class of carcinogens generally requires different sampling and analytical methods. In addition, a single indoor environment may contain a wide variety of air pollutants from different sources. Unfortunately, no single best approach currently exists for the quantitative determination of such complex mixtures and, for practical reasons, only the more toxic or the more abundant pollutants are usually measured. This paper summarizes the currently available monitoring methods for selected environmental pollutants found in indoor atmospheres. In addition, some possible sources for those pollutants are identified.  相似文献   

16.
Cancer prevention is a major component of cancer control, which also comprises screening, treatment, rehabilitation and palliative care. Preventive approaches need to be congruent with those adopted for other chronic diseases, with a major impact in reduction of incidence and mortality of many common cancers to be expected from smoking control and dietary modification. Increasing interest is now being paid to other environmental causes of cancer, and to gene-environment interactions. However, one of the major research needs remains the evaluation of better ways to convince people to make the necessary changes in their lifestyle that will reduce their risk of cancer.  相似文献   

17.
H J Gibb  C W Chen 《Risk analysis》1986,6(2):167-170
Under the assumption of multistage carcinogenesis, a multiplicative carcinogenic effect would be produced by the action of different carcinogens in a mixture on different stages of the carcinogenic process. An additive effect would be produced by the effect of different carcinogens on the same stage. A mathematical argument for these hypotheses is presented here.  相似文献   

18.
P Milvy 《Risk analysis》1986,6(1):69-79
A simple relationship is formulated that helps to discriminate between acceptable and unacceptable individual lifetime risks (RL) to populations that are exposed to chemical carcinogens. The relationship is an empirical one and is developed using objective risk data as well as subjective risk levels that have found substantial acceptance among those concerned with carcinogenic risk assessment issues. The expression sets acceptable levels of lifetime carcinogenic risk and is a function of the total population exposed to the carcinogen. Its use in risk assessment and risk management provides guidance in distinguishing those carcinogens that should be regulated because of the health hazard they pose from those whose regulation may not be needed.  相似文献   

19.
The excess cancer risk that might result from exposure to a mixture of chemical carcinogens usually must be estimated using data from experiments conducted with individual chemicals. In estimating such risk, it is commonly assumed that the total risk due to the mixture is the sum of the risks of the individual components, provided that the risks associated with individual chemicals at levels present in the mixture are low. This assumption, while itself not necessarily conservative, has led to the conservative practice of summing individual upper-bound risk estimates in order to obtain an upper bound on the total excess cancer risk for a mixture. Less conservative procedures are described here and are illustrated for the case of a mixture of four carcinogens.  相似文献   

20.
Two assumptions used in risk assessment are investigated: (1) the assumption of fraction of lifetime dose rate assumes that the risk from a fractional lifetime exposure at a given dose rate is equal to the risk from full lifetime exposure at that same fraction of the given dose rate; (2) the assumption of fraction of lifetime risk assumes that the risk from a fractional lifetime exposure at a given dose rate is equal to that same fraction of the risk from full lifetime exposure at the same dose rate. These two assumptions are equivalent when risk is a linear function of dose. Thus both can be thought of as generalizations of the assumption that cancer risk is proportional to the total accumulated lifetime dose (or average daily dose), which is often made to assess the risk from short-term exposures. In this paper, the age-specific cumulative hazard functions are derived using the two-stage model developed by Moolgavkar, Venzon, and Knudson for situations when the exposure occurs during a single period or a single instant. The two assumptions described above are examined for three types of carcinogens, initiator, completer, and promoter, in the context of the model. For initiator and completer, these two assumptions are equivalent in the low-dose region; for a promoter, using the fraction of lifetime risk assumption is generally more conservative than that of the fraction of lifetime dose rate assumption. Tables are constructed to show that the use of either the fraction of lifetime dose rate assumption or the fraction lifetime risk assumption can both underestimate and overestimate the true risk for the three types of carcinogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号