首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Expectile regression is a topic which became popular in the last years. It includes ordinary mean regression as special case but is more general as it offers the possibility to also model non-central parts of a distribution. Semi-parametric expectile models have recently been developed and it is easy to perform flexible expectile estimation with modern software like R. We extend the model class by allowing for panel observations, i.e. clustered data with repeated measurements taken at the same individual. A random (individual) effect is incorporated in the model which accounts for the dependence structure in the data. We fit expectile sheets, meaning that not a single expectile is estimated but a whole range of expectiles is estimated simultaneously. The presented model allows for multiple covariates, where a semi-parametric approach with penalized splines is pursued to fit smooth expectile curves. We apply our methods to panel data from the German Socio-Economic Panel.  相似文献   

2.
胡亚南  田茂再 《统计研究》2019,36(1):104-114
零膨胀计数数据破坏了泊松分布的方差-均值关系,可由取值服从泊松分布的数据和取值为零(退化分布)的数据各占一定比例所构成的混合分布所解释。本文基于自适应弹性网技术, 研究了零膨胀计数数据的联合建模及变量选择问题.对于零膨胀泊松分布,引入潜变量,构造出零膨胀泊松模型的完全似然, 其中由零膨胀部分和泊松部分两项组成.考虑到协变量可能存在共线性和稀疏性,通过对似然函数加自适应弹性网惩罚得到目标函数,然后利用EM算法得到回归系数的稀疏估计量,并用贝叶斯信息准则BIC来确定最优调节参数.本文也给出了估计量的大样本性质的理论证明和模拟研究,最后把所提出的方法应用到实际问题中。  相似文献   

3.
The beta regression models are commonly used by practitioners to model variables that assume values in the standard unit interval (0, 1). In this paper, we consider the issue of variable selection for beta regression models with varying dispersion (VBRM), in which both the mean and the dispersion depend upon predictor variables. Based on a penalized likelihood method, the consistency and the oracle property of the penalized estimators are established. Following the coordinate descent algorithm idea of generalized linear models, we develop new variable selection procedure for the VBRM, which can efficiently simultaneously estimate and select important variables in both mean model and dispersion model. Simulation studies and body fat data analysis are presented to illustrate the proposed methods.  相似文献   

4.
Abstract. Similar to variable selection in the linear model, selecting significant components in the additive model is of great interest. However, such components are unknown, unobservable functions of independent variables. Some approximation is needed. We suggest a combination of penalized regression spline approximation and group variable selection, called the group‐bridge‐type spline method (GBSM), to handle this component selection problem with a diverging number of correlated variables in each group. The proposed method can select significant components and estimate non‐parametric additive function components simultaneously. To make the GBSM stable in computation and adaptive to the level of smoothness of the component functions, weighted power spline bases and projected weighted power spline bases are proposed. Their performance is examined by simulation studies. The proposed method is extended to a partial linear regression model analysis with real data, and gives reliable results.  相似文献   

5.
Sparsity-inducing penalties are useful tools for variable selection and are also effective for regression problems where the data are functions. We consider the problem of selecting not only variables but also decision boundaries in multiclass logistic regression models for functional data, using sparse regularization. The parameters of the functional logistic regression model are estimated in the framework of the penalized likelihood method with the sparse group lasso-type penalty, and then tuning parameters for the model are selected using the model selection criterion. The effectiveness of the proposed method is investigated through simulation studies and the analysis of a gene expression data set.  相似文献   

6.
We propose the penalized empirical likelihood method via bridge estimator in Cox's proportional hazard model for parameter estimation and variable selection. Under reasonable conditions, we show that penalized empirical likelihood in Cox's proportional hazard model has oracle property. A penalized empirical likelihood ratio for the vector of regression coefficients is defined and its limiting distribution is a chi-square distributions. The advantage of penalized empirical likelihood as a nonparametric likelihood approach is illustrated in testing hypothesis and constructing confidence sets. The method is illustrated by extensive simulation studies and a real example.  相似文献   

7.
We propose penalized minimum φ-divergence estimator for parameter estimation and variable selection in logistic regression. Using an appropriate penalty function, we show that penalized φ-divergence estimator has oracle property. With probability tending to 1, penalized φ-divergence estimator identifies the true model and estimates nonzero coefficients as efficiently as if the sparsity of the true model was known in advance. The advantage of penalized φ-divergence estimator is that it produces estimates of nonzero parameters efficiently than penalized maximum likelihood estimator when sample size is small and is equivalent to it for large one. Numerical simulations confirm our findings.  相似文献   

8.
王小燕等 《统计研究》2014,31(9):107-112
变量选择是统计建模的重要环节,选择合适的变量可以建立结构简单、预测精准的稳健模型。本文在logistic回归下提出了新的双层变量选择惩罚方法——adaptive Sparse Group Lasso(adSGL),其独特之处在于基于变量的分组结构作筛选,实现了组内和组间双层选择。该方法的优点是对各单个系数和组系数采取不同程度的惩罚,避免了过度惩罚大系数,从而提高了模型的估计和预测精度。求解的难点是惩罚似然函数不是严格凸的,因此本文基于组坐标下降法求解模型,并建立了调整参数的选取准则。模拟分析表明,对比现有代表性方法Sparse Group Lasso、Group Lasso及Lasso,adSGL法不仅提高了双层选择精度,而且降低了模型误差。最后本文将adSGL法应用到信用卡信用评分研究,对比logistic回归,它具有更高的分类精度和稳健性。  相似文献   

9.
U-estimates are defined as maximizers of objective functions that are U-statistics. As an alternative to M-estimates, U-estimates have been extensively used in linear regression, classification, survival analysis, and many other areas. They may rely on weaker data and model assumptions and be preferred over alternatives. In this article, we investigate penalized variable selection with U-estimates. We propose smooth approximations of the objective functions, which can greatly reduce computational cost without affecting asymptotic properties. We study penalized variable selection using penalties that have been well investigated with M-estimates, including the LASSO, adaptive LASSO, and bridge, and establish their asymptotic properties. Generically applicable computational algorithms are described. Performance of the penalized U-estimates is assessed using numerical studies.  相似文献   

10.
This paper studies the outlier detection and robust variable selection problem in the linear regression model. The penalized weighted least absolute deviation (PWLAD) regression estimation method and the adaptive least absolute shrinkage and selection operator (LASSO) are combined to simultaneously achieve outlier detection, and robust variable selection. An iterative algorithm is proposed to solve the proposed optimization problem. Monte Carlo studies are evaluated the finite-sample performance of the proposed methods. The results indicate that the finite sample performance of the proposed methods performs better than that of the existing methods when there are leverage points or outliers in the response variable or explanatory variables. Finally, we apply the proposed methodology to analyze two real datasets.  相似文献   

11.
Penalized regression methods have recently gained enormous attention in statistics and the field of machine learning due to their ability of reducing the prediction error and identifying important variables at the same time. Numerous studies have been conducted for penalized regression, but most of them are limited to the case when the data are independently observed. In this paper, we study a variable selection problem in penalized regression models with autoregressive (AR) error terms. We consider three estimators, adaptive least absolute shrinkage and selection operator, bridge, and smoothly clipped absolute deviation, and propose a computational algorithm that enables us to select a relevant set of variables and also the order of AR error terms simultaneously. In addition, we provide their asymptotic properties such as consistency, selection consistency, and asymptotic normality. The performances of the three estimators are compared with one another using simulated and real examples.  相似文献   

12.
Lifetime Data Analysis - Assuming Cox’s regression model, we consider penalized full likelihood approach to conduct variable selection under nested case–control (NCC) sampling....  相似文献   

13.
Abstract

In this paper we are concerned with variable selection in finite mixture of semiparametric regression models. This task consists of model selection for non parametric component and variable selection for parametric part. Thus, we encountered separate model selections for every non parametric component of each sub model. To overcome this computational burden, we introduced a class of variable selection procedures for finite mixture of semiparametric regression models using penalized approach for variable selection. It is shown that the new method is consistent for variable selection. Simulations show that the performance of proposed method is good, and it consequently improves pervious works in this area and also requires much less computing power than existing methods.  相似文献   

14.
In this paper, we adopt the Bayesian approach to expectile regression employing a likelihood function that is based on an asymmetric normal distribution. We demonstrate that improper uniform priors for the unknown model parameters yield a proper joint posterior. Three simulated data sets were generated to evaluate the proposed method which show that Bayesian expectile regression performs well and has different characteristics comparing with Bayesian quantile regression. We also apply this approach into two real data analysis.  相似文献   

15.
We consider variable selection in linear regression of geostatistical data that arise often in environmental and ecological studies. A penalized least squares procedure is studied for simultaneous variable selection and parameter estimation. Various penalty functions are considered including smoothly clipped absolute deviation. Asymptotic properties of penalized least squares estimates, particularly the oracle properties, are established, under suitable regularity conditions imposed on a random field model for the error process. Moreover, computationally feasible algorithms are proposed for estimating regression coefficients and their standard errors. Finite‐sample properties of the proposed methods are investigated in a simulation study and comparison is made among different penalty functions. The methods are illustrated by an ecological dataset of landcover in Wisconsin. The Canadian Journal of Statistics 37: 607–624; 2009 © 2009 Statistical Society of Canada  相似文献   

16.
Expectile regression [Newey W, Powell J. Asymmetric least squares estimation and testing, Econometrica. 1987;55:819–847] is a nice tool for estimating the conditional expectiles of a response variable given a set of covariates. Expectile regression at 50% level is the classical conditional mean regression. In many real applications having multiple expectiles at different levels provides a more complete picture of the conditional distribution of the response variable. Multiple linear expectile regression model has been well studied [Newey W, Powell J. Asymmetric least squares estimation and testing, Econometrica. 1987;55:819–847; Efron B. Regression percentiles using asymmetric squared error loss, Stat Sin. 1991;1(93):125.], but it can be too restrictive for many real applications. In this paper, we derive a regression tree-based gradient boosting estimator for nonparametric multiple expectile regression. The new estimator, referred to as ER-Boost, is implemented in an R package erboost publicly available at http://cran.r-project.org/web/packages/erboost/index.html. We use two homoscedastic/heteroscedastic random-function-generator models in simulation to show the high predictive accuracy of ER-Boost. As an application, we apply ER-Boost to analyse North Carolina County crime data. From the nonparametric expectile regression analysis of this dataset, we draw several interesting conclusions that are consistent with the previous study using the economic model of crime. This real data example also provides a good demonstration of some nice features of ER-Boost, such as its ability to handle different types of covariates and its model interpretation tools.  相似文献   

17.
We propose a statistical inference framework for the component-wise functional gradient descent algorithm (CFGD) under normality assumption for model errors, also known as $$L_2$$-Boosting. The CFGD is one of the most versatile tools to analyze data, because it scales well to high-dimensional data sets, allows for a very flexible definition of additive regression models and incorporates inbuilt variable selection. Due to the variable selection, we build on recent proposals for post-selection inference. However, the iterative nature of component-wise boosting, which can repeatedly select the same component to update, necessitates adaptations and extensions to existing approaches. We propose tests and confidence intervals for linear, grouped and penalized additive model components selected by $$L_2$$-Boosting. Our concepts also transfer to slow-learning algorithms more generally, and to other selection techniques which restrict the response space to more complex sets than polyhedra. We apply our framework to an additive model for sales prices of residential apartments and investigate the properties of our concepts in simulation studies.  相似文献   

18.
A regression model with skew-normal errors provides a useful extension for ordinary normal regression models when the data set under consideration involves asymmetric outcomes. Variable selection is an important issue in all regression analyses, and in this paper, we investigate the simultaneously variable selection in joint location and scale models of the skew-normal distribution. We propose a unified penalized likelihood method which can simultaneously select significant variables in the location and scale models. Furthermore, the proposed variable selection method can simultaneously perform parameter estimation and variable selection in the location and scale models. With appropriate selection of the tuning parameters, we establish the consistency and the oracle property of the regularized estimators. Simulation studies and a real example are used to illustrate the proposed methodologies.  相似文献   

19.
A class of nonstationary time series such as locally stationary time series can be approximately modeled by piecewise stationary autoregressive (PSAR) processes. But the number and locations of the piecewise autoregressive segments, as well as the number of nonzero coefficients in each autoregressive process, are unknown. In this paper, by connecting the multiple structural break detection with a variable selection problem for a linear model with a large number of regression coefficients, a novel and fast methodology utilizing modern penalized model selection is introduced for detecting multiple structural breaks in a PSAR process. It also simultaneously performs variable selection for each autoregressive model and hence the order selection. To further its performance, an algorithm is given, which remains very fast in computation. Numerical results from simulation and a real data example show that the algorithm has excellent empirical performance.  相似文献   

20.
In this paper, we consider the weighted composite quantile regression for linear model with left-truncated data. The adaptive penalized procedure for variable selection is proposed. The asymptotic normality and oracle property of the resulting estimators are also established. Simulation studies are conducted to illustrate the finite sample performance of the proposed methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号