首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary.  Structured additive regression models are perhaps the most commonly used class of models in statistical applications. It includes, among others, (generalized) linear models, (generalized) additive models, smoothing spline models, state space models, semiparametric regression, spatial and spatiotemporal models, log-Gaussian Cox processes and geostatistical and geoadditive models. We consider approximate Bayesian inference in a popular subset of structured additive regression models, latent Gaussian models , where the latent field is Gaussian, controlled by a few hyperparameters and with non-Gaussian response variables. The posterior marginals are not available in closed form owing to the non-Gaussian response variables. For such models, Markov chain Monte Carlo methods can be implemented, but they are not without problems, in terms of both convergence and computational time. In some practical applications, the extent of these problems is such that Markov chain Monte Carlo sampling is simply not an appropriate tool for routine analysis. We show that, by using an integrated nested Laplace approximation and its simplified version, we can directly compute very accurate approximations to the posterior marginals. The main benefit of these approximations is computational: where Markov chain Monte Carlo algorithms need hours or days to run, our approximations provide more precise estimates in seconds or minutes. Another advantage with our approach is its generality, which makes it possible to perform Bayesian analysis in an automatic, streamlined way, and to compute model comparison criteria and various predictive measures so that models can be compared and the model under study can be challenged.  相似文献   

2.
The combined model accounts for different forms of extra-variability and has traditionally been applied in the likelihood framework, or in the Bayesian setting via Markov chain Monte Carlo. In this article, integrated nested Laplace approximation is investigated as an alternative estimation method for the combined model for count data, and compared with the former estimation techniques. Longitudinal, spatial, and multi-hierarchical data scenarios are investigated in three case studies as well as a simulation study. As a conclusion, integrated nested Laplace approximation provides fast and precise estimation, while avoiding convergence problems often seen when using Markov chain Monte Carlo.  相似文献   

3.
Strategies for controlling plant epidemics are investigated by fitting continuous time spatiotemporal stochastic models to data consisting of maps of disease incidence observed at discrete times. Markov chain Monte Carlo methods are used for fitting two such models to data describing the spread of citrus tristeza virus (CTV) in an orchard. The approach overcomes some of the difficulties encountered when fitting stochastic models to infrequent observations of a continuous process. The results of the analysis cast doubt on the effectiveness of a strategy identified from a previous spatial analysis of the CTV data. Extensions of the approaches to more general models and other problems are also considered.  相似文献   

4.
Spatiotemporal prediction for log-Gaussian Cox processes   总被引:1,自引:0,他引:1  
Space–time point pattern data have become more widely available as a result of technological developments in areas such as geographic information systems. We describe a flexible class of space–time point processes. Our models are Cox processes whose stochastic intensity is a space–time Ornstein–Uhlenbeck process. We develop moment-based methods of parameter estimation, show how to predict the underlying intensity by using a Markov chain Monte Carlo approach and illustrate the performance of our methods on a synthetic data set.  相似文献   

5.
We compare Bayesian and sample theory model specification criteria. For the Bayesian criteria we use the deviance information criterion and the cumulative density of the mean squared errors of forecast. For the sample theory criterion we use the conditional Kolmogorov test. We use Markov chain Monte Carlo methods to obtain the Bayesian criteria and bootstrap sampling to obtain the conditional Kolmogorov test. Two non nested models we consider are the CIR and Vasicek models for spot asset prices. Monte Carlo experiments show that the DIC performs better than the cumulative density of the mean squared errors of forecast and the CKT. According to the DIC and the mean squared errors of forecast, the CIR model explains the daily data on uncollateralized Japanese call rate from January 1, 1990 to April 18, 1996; but according to the CKT, neither the CIR nor Vasicek models explains the daily data.  相似文献   

6.
We study sequential Bayesian inference in stochastic kinetic models with latent factors. Assuming continuous observation of all the reactions, our focus is on joint inference of the unknown reaction rates and the dynamic latent states, modeled as a hidden Markov factor. Using insights from nonlinear filtering of continuous-time jump Markov processes we develop a novel sequential Monte Carlo algorithm for this purpose. Our approach applies the ideas of particle learning to minimize particle degeneracy and exploit the analytical jump Markov structure. A motivating application of our methods is modeling of seasonal infectious disease outbreaks represented through a compartmental epidemic model. We demonstrate inference in such models with several numerical illustrations and also discuss predictive analysis of epidemic countermeasures using sequential Bayes estimates.  相似文献   

7.
Importance sampling and Markov chain Monte Carlo methods have been used in exact inference for contingency tables for a long time, however, their performances are not always very satisfactory. In this paper, we propose a stochastic approximation Monte Carlo importance sampling (SAMCIS) method for tackling this problem. SAMCIS is a combination of adaptive Markov chain Monte Carlo and importance sampling, which employs the stochastic approximation Monte Carlo algorithm (Liang et al., J. Am. Stat. Assoc., 102(477):305–320, 2007) to draw samples from an enlarged reference set with a known Markov basis. Compared to the existing importance sampling and Markov chain Monte Carlo methods, SAMCIS has a few advantages, such as fast convergence, ergodicity, and the ability to achieve a desired proportion of valid tables. The numerical results indicate that SAMCIS can outperform the existing importance sampling and Markov chain Monte Carlo methods: It can produce much more accurate estimates in much shorter CPU time than the existing methods, especially for the tables with high degrees of freedom.  相似文献   

8.
Multiple time series of scalp electrical potential activity are generated routinely in electroencephalographic (EEG) studies. Such recordings provide important non-invasive data about brain function in human neuropsychiatric disorders. Analyses of EEG traces aim to isolate characteristics of their spatiotemporal dynamics that may be useful in diagnosis, or may improve the understanding of the underlying neurophysiology or may improve treatment through identifying predictors and indicators of clinical outcomes. We discuss the development and application of non-stationary time series models for multiple EEG series generated from individual subjects in a clinical neuropsychiatric setting. The subjects are depressed patients experiencing generalized tonic–clonic seizures elicited by electroconvulsive therapy (ECT) as antidepressant treatment. Two varieties of models—dynamic latent factor models and dynamic regression models—are introduced and studied. We discuss model motivation and form, and aspects of statistical analysis including parameter identifiability, posterior inference and implementation of these models via Markov chain Monte Carlo techniques. In an application to the analysis of a typical set of 19 EEG series recorded during an ECT seizure at different locations over a patient's scalp, these models reveal time-varying features across the series that are strongly related to the placement of the electrodes. We illustrate various model outputs, the exploration of such time-varying spatial structure and its relevance in the ECT study, and in basic EEG research in general.  相似文献   

9.
Modern Statistics for Spatial Point Processes*   总被引:1,自引:0,他引:1  
Abstract. We summarize and discuss the current state of spatial point process theory and directions for future research, making an analogy with generalized linear models and random effect models, and illustrating the theory with various examples of applications. In particular, we consider Poisson, Gibbs and Cox process models, diagnostic tools and model checking, Markov chain Monte Carlo algorithms, computational methods for likelihood-based inference, and quick non-likelihood approaches to inference.  相似文献   

10.
Looking at predictive accuracy is a traditional method for comparing models. A natural method for approximating out-of-sample predictive accuracy is leave-one-out cross-validation (LOOCV)—we alternately hold out each case from a full dataset and then train a Bayesian model using Markov chain Monte Carlo without the held-out case; at last we evaluate the posterior predictive distribution of all cases with their actual observations. However, actual LOOCV is time-consuming. This paper introduces two methods, namely iIS and iWAIC, for approximating LOOCV with only Markov chain samples simulated from a posterior based on a full dataset. iIS and iWAIC aim at improving the approximations given by importance sampling (IS) and WAIC in Bayesian models with possibly correlated latent variables. In iIS and iWAIC, we first integrate the predictive density over the distribution of the latent variables associated with the held-out without reference to its observation, then apply IS and WAIC approximations to the integrated predictive density. We compare iIS and iWAIC with other approximation methods in three kinds of models: finite mixture models, models with correlated spatial effects, and a random effect logistic regression model. Our empirical results show that iIS and iWAIC give substantially better approximates than non-integrated IS and WAIC and other methods.  相似文献   

11.
Summary.  Short-term forecasts of air pollution levels in big cities are now reported in news-papers and other media outlets. Studies indicate that even short-term exposure to high levels of an air pollutant called atmospheric particulate matter can lead to long-term health effects. Data are typically observed at fixed monitoring stations throughout a study region of interest at different time points. Statistical spatiotemporal models are appropriate for modelling these data. We consider short-term forecasting of these spatiotemporal processes by using a Bayesian kriged Kalman filtering model. The spatial prediction surface of the model is built by using the well-known method of kriging for optimum spatial prediction and the temporal effects are analysed by using the models underlying the Kalman filtering method. The full Bayesian model is implemented by using Markov chain Monte Carlo techniques which enable us to obtain the optimal Bayesian forecasts in time and space. A new cross-validation method based on the Mahalanobis distance between the forecasts and observed data is also developed to assess the forecasting performance of the model implemented.  相似文献   

12.
Due to the escalating growth of big data sets in recent years, new Bayesian Markov chain Monte Carlo (MCMC) parallel computing methods have been developed. These methods partition large data sets by observations into subsets. However, for Bayesian nested hierarchical models, typically only a few parameters are common for the full data set, with most parameters being group specific. Thus, parallel Bayesian MCMC methods that take into account the structure of the model and split the full data set by groups rather than by observations are a more natural approach for analysis. Here, we adapt and extend a recently introduced two-stage Bayesian hierarchical modeling approach, and we partition complete data sets by groups. In stage 1, the group-specific parameters are estimated independently in parallel. The stage 1 posteriors are used as proposal distributions in stage 2, where the target distribution is the full model. Using three-level and four-level models, we show in both simulation and real data studies that results of our method agree closely with the full data analysis, with greatly increased MCMC efficiency and greatly reduced computation times. The advantages of our method versus existing parallel MCMC computing methods are also described.  相似文献   

13.
We propose a two-stage algorithm for computing maximum likelihood estimates for a class of spatial models. The algorithm combines Markov chain Monte Carlo methods such as the Metropolis–Hastings–Green algorithm and the Gibbs sampler, and stochastic approximation methods such as the off-line average and adaptive search direction. A new criterion is built into the algorithm so stopping is automatic once the desired precision has been set. Simulation studies and applications to some real data sets have been conducted with three spatial models. We compared the algorithm proposed with a direct application of the classical Robbins–Monro algorithm using Wiebe's wheat data and found that our procedure is at least 15 times faster.  相似文献   

14.
A class of parametric dynamic survival models are explored in which only limited parametric assumptions are made, whilst avoiding the assumption of proportional hazards. Both the log-baseline hazard and covariate effects are modelled by piecewise constant and correlated processes. The method of estimation is to use Markov chain Monte Carlo simulations Gibbs sampling with a Metropolis–Hastings step. In addition to standard right censored data sets, extensions to accommodate interval censoring and random effects are included. The model is applied to two well known and illustrative data sets, and the dynamic variability of covariate effects investigated.  相似文献   

15.
Likelihood computation in spatial statistics requires accurate and efficient calculation of the normalizing constant (i.e. partition function) of the Gibbs distribution of the model. Two available methods to calculate the normalizing constant by Markov chain Monte Carlo methods are compared by simulation experiments for an Ising model, a Gaussian Markov field model and a pairwise interaction point field model.  相似文献   

16.
Models for which the likelihood function can be evaluated only up to a parameter-dependent unknown normalizing constant, such as Markov random field models, are used widely in computer science, statistical physics, spatial statistics, and network analysis. However, Bayesian analysis of these models using standard Monte Carlo methods is not possible due to the intractability of their likelihood functions. Several methods that permit exact, or close to exact, simulation from the posterior distribution have recently been developed. However, estimating the evidence and Bayes’ factors for these models remains challenging in general. This paper describes new random weight importance sampling and sequential Monte Carlo methods for estimating BFs that use simulation to circumvent the evaluation of the intractable likelihood, and compares them to existing methods. In some cases we observe an advantage in the use of biased weight estimates. An initial investigation into the theoretical and empirical properties of this class of methods is presented. Some support for the use of biased estimates is presented, but we advocate caution in the use of such estimates.  相似文献   

17.
We present a Bayesian analysis framework for matrix-variate normal data with dependency structures induced by rows and columns. This framework of matrix normal models includes prior specifications, posterior computation using Markov chain Monte Carlo methods, evaluation of prediction uncertainty, model structure search, and extensions to multidimensional arrays. Compared with Bayesian probabilistic matrix factorization, which integrates a Gaussian prior for single row of the data matrix, our proposed model, namely Bayesian hierarchical kernelized probabilistic matrix factorization, imposes Gaussian Process priors over multiple rows of the matrix. Hence, the learned model explicitly captures the underlying correlation among the rows and the columns. In addition, our method requires no specific assumptions like independence of latent factors for rows and columns, which obtains more flexibility for modeling real data compared to existing works. Finally, the proposed framework can be adapted to a wide range of applications, including multivariate analysis, times series, and spatial modeling. Experiments highlight the superiority of the proposed model in handling model uncertainty and model optimization.  相似文献   

18.
Summary.  Functional magnetic resonance imaging has become a standard technology in human brain mapping. Analyses of the massive spatiotemporal functional magnetic resonance imaging data sets often focus on parametric or non-parametric modelling of the temporal component, whereas spatial smoothing is based on Gaussian kernels or random fields. A weakness of Gaussian spatial smoothing is underestimation of activation peaks or blurring of high curvature transitions between activated and non-activated regions of the brain. To improve spatial adaptivity, we introduce a class of inhomogeneous Markov random fields with stochastic interaction weights in a space-varying coefficient model. For given weights, the random field is conditionally Gaussian, but marginally it is non-Gaussian. Fully Bayesian inference, including estimation of weights and variance parameters, can be carried out through efficient Markov chain Monte Carlo simulation. Although motivated by the analysis of functional magnetic resonance imaging data, the methodological development is general and can also be used for spatial smoothing and regression analysis of areal data on irregular lattices. An application to stylized artificial data and to real functional magnetic resonance imaging data from a visual stimulation experiment demonstrates the performance of our approach in comparison with Gaussian and robustified non-Gaussian Markov random-field models.  相似文献   

19.
Integro-difference equations (IDEs) provide a flexible framework for dynamic modeling of spatio-temporal data. The choice of kernel in an IDE model relates directly to the underlying physical process modeled, and it can affect model fit and predictive accuracy. We introduce Bayesian non-parametric methods to the IDE literature as a means to allow flexibility in modeling the kernel. We propose a mixture of normal distributions for the IDE kernel, built from a spatial Dirichlet process for the mixing distribution, which can model kernels with shapes that change with location. This allows the IDE model to capture non-stationarity with respect to location and to reflect a changing physical process across the domain. We address computational concerns for inference that leverage the use of Hermite polynomials as a basis for the representation of the process and the IDE kernel, and incorporate Hamiltonian Markov chain Monte Carlo steps in the posterior simulation method. An example with synthetic data demonstrates that the model can successfully capture location-dependent dynamics. Moreover, using a data set of ozone pressure, we show that the spatial Dirichlet process mixture model outperforms several alternative models for the IDE kernel, including the state of the art in the IDE literature, that is, a Gaussian kernel with location-dependent parameters.  相似文献   

20.
考虑到传统信息理论方法确定模型存在不足,在贝叶斯理论框架下提出了基于逆跳马尔可夫链蒙特卡罗法确定分位自回归模型阶次的方法。在时间序列服从非对称Laplace分布的条件下,设计了马尔可夫链蒙特卡罗数值计算程序,得到了不同分位数下模型参数的贝叶斯估计值。实证研究表明:基于逆跳马尔可夫链蒙特卡罗法的贝叶斯分位自回归模型能有效地揭示滞后变量对响应变量的位置、尺度和形状的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号