首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article reviews the exciting and rapidly expanding literature on realized volatility. After presenting a general univariate framework for estimating realized volatilities, a simple discrete time model is presented in order to motivate the main results. A continuous time specification provides the theoretical foundation for the main results in this literature. Cases with and without microstructure noise are considered, and it is shown how microstructure noise can cause severe problems in terms of consistent estimation of the daily realized volatility. Independent and dependent noise processes are examined. The most important methods for providing consistent estimators are presented, and a critical exposition of different techniques is given. The finite sample properties are discussed in comparison with their asymptotic properties. A multivariate model is presented to discuss estimation of the realized covariances. Various issues relating to modelling and forecasting realized volatilities are considered. The main empirical findings using univariate and multivariate methods are summarized.  相似文献   

2.
Forecast methods for realized volatilities are reviewed. Basic theoretical and empirical features of realized volatilities as well as versions of estimators of realized volatility are briefly investigated. Major forecast models featuring the empirical aspects of persistency and asymmetry are discussed in terms of forecasting models for which the heterogeneous autoregressive (HAR) model is one of the most basic one in the recent literature. Forecast methods addressing the issues of jump, break, implied volatility, and market microstructure noise are reviewed. Forecasting realized covariance matrix is also considered.  相似文献   

3.
We propose localized spectral estimators for the quadratic covariation and the spot covolatility of diffusion processes, which are observed discretely with additive observation noise. The appropriate estimation for time‐varying volatilities is based on an asymptotic equivalence of the underlying statistical model to a white‐noise model with correlation and volatility processes being constant over small time intervals. The asymptotic equivalence of the continuous‐time and discrete‐time experiments is proved by a construction with linear interpolation in one direction and local means for the other. The new estimator outperforms earlier non‐parametric methods in the literature for the considered model. We investigate its finite sample size characteristics in simulations and draw a comparison between various proposed methods.  相似文献   

4.
Estimating parameters in a stochastic volatility (SV) model is a challenging task. Among other estimation methods and approaches, efficient simulation methods based on importance sampling have been developed for the Monte Carlo maximum likelihood estimation of univariate SV models. This paper shows that importance sampling methods can be used in a general multivariate SV setting. The sampling methods are computationally efficient. To illustrate the versatility of this approach, three different multivariate stochastic volatility models are estimated for a standard data set. The empirical results are compared to those from earlier studies in the literature. Monte Carlo simulation experiments, based on parameter estimates from the standard data set, are used to show the effectiveness of the importance sampling methods.  相似文献   

5.
Estimating parameters in a stochastic volatility (SV) model is a challenging task. Among other estimation methods and approaches, efficient simulation methods based on importance sampling have been developed for the Monte Carlo maximum likelihood estimation of univariate SV models. This paper shows that importance sampling methods can be used in a general multivariate SV setting. The sampling methods are computationally efficient. To illustrate the versatility of this approach, three different multivariate stochastic volatility models are estimated for a standard data set. The empirical results are compared to those from earlier studies in the literature. Monte Carlo simulation experiments, based on parameter estimates from the standard data set, are used to show the effectiveness of the importance sampling methods.  相似文献   

6.
Abstract

Although stochastic volatility and GARCH (generalized autoregressive conditional heteroscedasticity) models have successfully described the volatility dynamics of univariate asset returns, extending them to the multivariate models with dynamic correlations has been difficult due to several major problems. First, there are too many parameters to estimate if available data are only daily returns, which results in unstable estimates. One solution to this problem is to incorporate additional observations based on intraday asset returns, such as realized covariances. Second, since multivariate asset returns are not synchronously traded, we have to use the largest time intervals such that all asset returns are observed to compute the realized covariance matrices. However, in this study, we fail to make full use of the available intraday informations when there are less frequently traded assets. Third, it is not straightforward to guarantee that the estimated (and the realized) covariance matrices are positive definite.

Our contributions are the following: (1) we obtain the stable parameter estimates for the dynamic correlation models using the realized measures, (2) we make full use of intraday informations by using pairwise realized correlations, (3) the covariance matrices are guaranteed to be positive definite, (4) we avoid the arbitrariness of the ordering of asset returns, (5) we propose the flexible correlation structure model (e.g., such as setting some correlations to be zero if necessary), and (6) the parsimonious specification for the leverage effect is proposed. Our proposed models are applied to the daily returns of nine U.S. stocks with their realized volatilities and pairwise realized correlations and are shown to outperform the existing models with respect to portfolio performances.  相似文献   

7.
For financial volatilities such as realized volatility and volatility index, a new parametric quantile forecast strategy is proposed, focusing on forecast interval and value at risk (VaR) forecast. This fully addresses asymmetries in 3 parts: mean, volatility and distribution. The asymmetries are addressed by the LHAR (leverage heterogeneous autoregressive) model of McAleer and Medeiros (2008) and Corsi and Reno (2009) for the mean part, by the EGARCH model for the volatility part, and by the skew-t distribution for the error distribution part. The method is applied to the realized volatilities and the volatility indexes of the US S&P 500 index, the US NASDAQ index, the Korea KOSPI index in which significant asymmetries are identified. Considerable out-of-sample forecast improvements of the forecast interval and VaR forecast are demonstrated for the volatilities: forecast intervals of volatilities have better coverages with shorter lengths and VaR forecasts of volatility indexes have better violations if asymmetries are properly addressed rather than ignored. The proposed parametric method reveals considerably better out-of-sample performance than the recently proposed semiparametric quantile regression approach of Zikes and Barunik (2016).  相似文献   

8.
This paper presents variance extraction procedures for univariate time series. The volatility of a times series is monitored allowing for non-linearities, jumps and outliers in the level. The volatility is measured using the height of triangles formed by consecutive observations of the time series. This idea was proposed by Rousseeuw and Hubert [1996. Regression-free and robust estimation of scale for bivariate data. Comput. Statist. Data Anal. 21, 67–85] in the bivariate setting. This paper extends their procedure to apply for online scale estimation in time series analysis. The statistical properties of the new methods are derived and finite sample properties are given. A financial and a medical application illustrate the use of the procedures.  相似文献   

9.
The literature on multivariate stochastic volatility (MSV) models has developed significantly over the last few years. This paper reviews the substantial literature on specification, estimation, and evaluation of MSV models. A wide range of MSV models is presented according to various categories, namely, (i) asymmetric models, (ii) factor models, (iii) time-varying correlation models, and (iv) alternative MSV specifications, including models based on the matrix exponential transformation, the Cholesky decomposition, and the Wishart autoregressive process. Alternative methods of estimation, including quasi-maximum likelihood, simulated maximum likelihood, and Markov chain Monte Carlo methods, are discussed and compared. Various methods of diagnostic checking and model comparison are also reviewed.  相似文献   

10.
The literature on multivariate stochastic volatility (MSV) models has developed significantly over the last few years. This paper reviews the substantial literature on specification, estimation, and evaluation of MSV models. A wide range of MSV models is presented according to various categories, namely, (i) asymmetric models, (ii) factor models, (iii) time-varying correlation models, and (iv) alternative MSV specifications, including models based on the matrix exponential transformation, the Cholesky decomposition, and the Wishart autoregressive process. Alternative methods of estimation, including quasi-maximum likelihood, simulated maximum likelihood, and Markov chain Monte Carlo methods, are discussed and compared. Various methods of diagnostic checking and model comparison are also reviewed.  相似文献   

11.
Multi-asset modelling is of fundamental importance to financial applications such as risk management and portfolio selection. In this article, we propose a multivariate stochastic volatility modelling framework with a parsimonious and interpretable correlation structure. Building on well-established evidence of common volatility factors among individual assets, we consider a multivariate diffusion process with a common-factor structure in the volatility innovations. Upon substituting an observable market proxy for the common volatility factor, we markedly improve the estimation of several model parameters and latent volatilities. The model is applied to a portfolio of several important constituents of the S&P500 in the financial sector, with the VIX index as the common-factor proxy. We find that the prediction intervals for asset forecasts are comparable to those of more complex dependence models, but that option-pricing uncertainty can be greatly reduced by adopting a common-volatility structure. The Canadian Journal of Statistics 48: 36–61; 2020 © 2020 Statistical Society of Canada  相似文献   

12.
Theoretical models of contagion and spillovers allow for asset-specific shocks that can be directly transmitted from one asset to another, as well as indirectly transmitted across uncorrelated assets through some intermediary mechanism. Standard multivariate Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models, however, provide estimates of volatilities and correlations based only on the direct transmission of shocks across assets. As such, spillover effects via an intermediary asset or market are not considered. In this article, a multivariate GARCH model is constructed that provides estimates of volatilities and correlations based on both directly and indirectly transmitted shocks. The model is applied to exchange rate and equity returns data. The results suggest that if a spillover component is observed in the data, the spillover augmented models provide significantly different volatility estimates compared to standard multivariate GARCH models.  相似文献   

13.
This paper proposes a high dimensional factor multivariate stochastic volatility (MSV) model in which factor covariance matrices are driven by Wishart random processes. The framework allows for unrestricted specification of intertemporal sensitivities, which can capture the persistence in volatilities, kurtosis in returns, and correlation breakdowns and contagion effects in volatilities. The factor structure allows addressing high dimensional setups used in portfolio analysis and risk management, as well as modeling conditional means and conditional variances within the model framework. Owing to the complexity of the model, we perform inference using Markov chain Monte Carlo simulation from the posterior distribution. A simulation study is carried out to demonstrate the efficiency of the estimation algorithm. We illustrate our model on a data set that includes 88 individual equity returns and the two Fama–French size and value factors. With this application, we demonstrate the ability of the model to address high dimensional applications suitable for asset allocation, risk management, and asset pricing.  相似文献   

14.
This paper proposes a high dimensional factor multivariate stochastic volatility (MSV) model in which factor covariance matrices are driven by Wishart random processes. The framework allows for unrestricted specification of intertemporal sensitivities, which can capture the persistence in volatilities, kurtosis in returns, and correlation breakdowns and contagion effects in volatilities. The factor structure allows addressing high dimensional setups used in portfolio analysis and risk management, as well as modeling conditional means and conditional variances within the model framework. Owing to the complexity of the model, we perform inference using Markov chain Monte Carlo simulation from the posterior distribution. A simulation study is carried out to demonstrate the efficiency of the estimation algorithm. We illustrate our model on a data set that includes 88 individual equity returns and the two Fama-French size and value factors. With this application, we demonstrate the ability of the model to address high dimensional applications suitable for asset allocation, risk management, and asset pricing.  相似文献   

15.
Instantaneous dependence among several asset returns is the main reason for the computational and statistical complexities in working with full multivariate GARCH models. Using the Cholesky decomposition of the covariance matrix of such returns, we introduce a broad class of multivariate models where univariate GARCH models are used for variances of individual assets and parsimonious models for the time-varying unit lower triangular matrices. This approach, while reducing the number of parameters and severity of the positive-definiteness constraint, has several advantages compared to the traditional orthogonal and related GARCH models. Its major drawback is the potential need for an a priori ordering or grouping of the stocks in a portfolio, which through a case study we show can be taken advantage of so far as reducing the forecast error of the volatilities and the dimension of the parameter space are concerned. Moreover, the Cholesky decomposition, unlike its competitors, decompose the normal likelihood function as a product of univariate normal likelihoods with independent parameters, resulting in fast estimation algorithms. Gaussian maximum likelihood methods of estimation of the parameters are developed. The methodology is implemented for a real financial dataset with seven assets, and its forecasting power is compared with other existing models.  相似文献   

16.
This article introduces a new model for transaction prices in the presence of market microstructure noise in order to study the properties of the price process on two different time scales, namely, transaction time where prices are sampled with every transaction and tick time where prices are sampled with every price change. Both sampling schemes have been used in the literature on realized variance, but a formal investigation into their properties has been lacking. Our empirical and theoretical results indicate that the return dynamics in transaction time are very different from those in tick time and the choice of sampling scheme can therefore have an important impact on the properties of realized variance. For RV we find that tick time sampling is superior to transaction time sampling in terms of mean-squared-error, especially when the level of noise, number of ticks, or the arrival frequency of efficient price moves is low. Importantly, we show that while the microstructure noise may appear close to IID in transaction time, in tick time it is highly dependent. As a result, bias correction procedures that rely on the noise being independent, can fail in tick time and are better implemented in transaction time.  相似文献   

17.
This article introduces a new model for transaction prices in the presence of market microstructure noise in order to study the properties of the price process on two different time scales, namely, transaction time where prices are sampled with every transaction and tick time where prices are sampled with every price change. Both sampling schemes have been used in the literature on realized variance, but a formal investigation into their properties has been lacking. Our empirical and theoretical results indicate that the return dynamics in transaction time are very different from those in tick time and the choice of sampling scheme can therefore have an important impact on the properties of realized variance. For RV we find that tick time sampling is superior to transaction time sampling in terms of mean-squared-error, especially when the level of noise, number of ticks, or the arrival frequency of efficient price moves is low. Importantly, we show that while the microstructure noise may appear close to IID in transaction time, in tick time it is highly dependent. As a result, bias correction procedures that rely on the noise being independent, can fail in tick time and are better implemented in transaction time.  相似文献   

18.
A multivariate generalized autoregressive conditional heteroscedasticity model with dynamic conditional correlations is proposed, in which the individual conditional volatilities follow exponential generalized autoregressive conditional heteroscedasticity models and the standardized innovations follow a mixture of Gaussian distributions. Inference on the model parameters and prediction of future volatilities are addressed by both maximum likelihood and Bayesian estimation methods. Estimation of the Value at Risk of a given portfolio and selection of optimal portfolios under the proposed specification are addressed. The good performance of the proposed methodology is illustrated via Monte Carlo experiments and the analysis of the daily closing prices of the Dow Jones and NASDAQ indexes.  相似文献   

19.
This paper conducts simulation-based comparison of several stochastic volatility models with leverage effects. Two new variants of asymmetric stochastic volatility models, which are subject to a logarithmic transformation on the squared asset returns, are proposed. The leverage effect is introduced into the model through correlation either between the innovations of the observation equation and the latent process, or between the logarithm of squared asset returns and the latent process. Suitable Markov Chain Monte Carlo algorithms are developed for parameter estimation and model comparison. Simulation results show that our proposed formulation of the leverage effect and the accompanying inference methods give rise to reasonable parameter estimates. Applications to two data sets uncover a negative correlation (which can be interpreted as a leverage effect) between the observed returns and volatilities, and a negative correlation between the logarithm of squared returns and volatilities.  相似文献   

20.
I explain why at-the-money implied volatility is a biased and inefficient forecast of future realized volatility using the insights from the empirical option-pricing literature. First, I explain how the risk premia, which manifest themselves through disparity between objective and risk-neutral probability measures, lead to the disparity between realized and implied volatilities. Second, I show that this disparity is a function of the latent spot volatility, which I estimate using the historical volatility and high–low range. An empirical exercise that is based on at-the-money implied volatility series of foreign currencies and stock market indexes, is supportive of my risk premia-based explanation of the bias.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号